Bulletin 4 (41) 2021

Full text

I. Vechtomov E. M., Chermnykh V. V. Main directions of the development of the semiring theory

DOI: 10.34130/1992-2752_2021_4_4

Vechtomov Evgeny Mikhailovich − Doctor of Physical and Mathematical Sciences, Professor, Head of the Department of Fundamental and Computer Mathematics, Vyatka State University, e-mail: vecht@mail.ru

Chermnykh Vasily Vladimirovich − Doctor of Physical and Mathematical Sciences, Pitirim Sorokin Syktyvkar State University, chief scientist, e-mail: vv146@mail.ru

Text

The article highlights and analyzes the main directions of formation and development of Semiring Theory. The first ring-module direction summarizes and extends the theory of rings and modules onto semirings and semimodules over them. The next one is a universal algebraic direction that is based on Universal Algebra and Group Theory. The third direction is connected with study of special classes of semirings and is aimed at using semirings within Mathematics, in Computer Sciences and in applications of Mathematics. The first two directions contain investigating of the general theory of semirings, building structural theories for certain important and interesting classes of abstract semirings. The third direction includes describing of finite semirings with certain conditions.

Keywords: semiring, semifield, semimodule, ring, distributive lattice, development of Theory of Semirings.

References

  1. Golan J. S. Semirings and their Applications. Dordrecht: Kluwer Academic Publishers, 1999. 38 p.
  2. Vandiver H. S. Note on a simple type of algebra in which cancelation law of addition does not hold. Bull. Amer. Math. Soc., 1934, V. 40. Pp. 914–920.
  3. Dedekind R. Uber die Theorie der ganzen algebraischen Zahlen ¨ Supplement XI to P.G. Lejeune Dirichlet: Vorlessungen Uber Zahlentheorie, 4 Anfl., Druck und Verlag, Braunschweig, 1894.
  4. Hilbert D. Uber den Zahlbegriff. ¨ Jahresber. Deutsch. Math. Verein., 1899, V. 8. Pp. 180–184.
  5. Hebisch U., Weinert H. J. Semirings: theory and applications in computer science. Series in Algebra. Vol. V. World Scientific, Singapore, 1998. 361 p.
  6. Golan J. S. The theory of semirings with applications in mathemayics and theoretical computer science. Pitman monographs and syrveys in pure and applied mathematics, V. 54, 1992 (1991).
  7. Glazek K. A Short Guide Through the Literature on Semirings. Preprint No. 39. University of Wroclaw, Math. Inst., Wroclaw, 1985.
  8. Glazek K. A Short Guide to the Literature on Semirings and Their Applications in Mathematics and Computer Science. Technical University Press, 2002.
  9. Maslyaev D. A., Chermnykh V. V. Skew Laurent polynomial semiring. Sibirskie elektronnye matematicheskie izvestiya [Siberian Electronic Mathematical News], 2020, V. 17. Pp. 521–533.
  10. Vechtomov E. M. Vvedenie v polukoltsa: uchebnoe posobie [Introduction to semirings: A Tutorial], Kirov, Izd. Vyatskogo gospeduniversiteta, 2000. 44 p.
  11. Lukin M. A. On universal congruence on semirings. Problemy sovremennogo matematicheskogo obrazovaniya v pedvuzah i shkolah Rossii: interaktivnye formy obucheniya matematike studentov i shkol’nikov. Materialy V Vserossiyskoy nauchno-metodicheskoy
    konferentsyi [Problems of Modern Mathematics Education in Pedagogical Universities and Schools of Russia: Interactive Forms of Teaching Mathematics to Students and Schoolchildren : Proceedings of the V All-Russian Scientific and Methodical Conference], Kirov, Izd. VyatGGU, 2012. Pp. 312–316.
  12. Vechtomov E. M., Petrov A. A. Multiplicatively idempotent semirings. Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics], 2013, V. 18. No. 4. Pp. 41–70.
  13. Vechtomov E. M., Cheraneva A. V. On the theory of semidivision rings). Uspehi matematicheskih nauk [Advances in Mathematical Sciences], 2008, V. 63. No. 2. Pp. 161–162.
  14. Vechtomov E. M., Cheraneva A. V. Semifields and their properties. Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics], 2008, V. 14. No. 5. Pp. 3–54.
  15. Polin S. V. Simple semisfields and semifields. Sibirskiy matematicheskiy zhurnal [Siberian Mathematical Journal], 1974, V. 15. No. 1. Pp. 90–101.
  16. Chermnykh V. V. Funktsional’nye predstavleniya polukolets: monografiya [Functional representations of semirings: monography], Kirov, Izd. VyatGGU, 2010. 224 p.
  17. Vechtomov E. M., Petrov A. A. Polukoltsa s idempotentnym umnozheniem: monografiya [Semirings with idempotent multiplication: monography], Kirov, OOO «Raduga-PRESS»,144 p.
  18. Vechtomov E. M., Lukin M. A. Semirings which are the unions of a ring and a semifield. Uspehi matematicheskih nauk [Advances in Mathematical Sciences], 2008, V. 63. No. 6. Pp. 159–160.
  19. Lukin M. A. Semiring joins of a ring and semifield. Izvestiya vuzov. Matematika [Proceedings of Higher Education Institutions. Mathematics], 2008. No. 12. Pp. 76–80.
  20. Vechtomov E. M., Lubyagina E. N., Chermnykh V. V. Elementy teorii polukolets [Elements of semiring theory], Kirov, OOO «Raduga-PRESS», 2012. 228 p.
  21. Vechtomov E. M., Starostina O. V. Structure of abelian regular positive semirings). Uspehi matematicheskih nauk [Advances in Mathematical Sciences], 2007. V. 62. No. 1. Pp. 199–200.
  22. Vechtomov E. M., Starostina O. V. Generalized abelian regular positive semirings). Vestnik Syktyvkarskogo universiteta. Seriya Matematuka. Mehanika. Informatika [Bulletin of the Syktyvkar University. Series 1. Mathematics. Mechanics. Informatics], 2007, Vol.Pp. 3–16.
  23. Chermnykh V. V., Mikhalev A. V., Vechtomov E. M. Abelianregular positive semirings. Journal of Mathematical Science [New York], 1999, V. 97. Pp. 4162–4176.
  24. Vechtomov E. M. Annihilator characterizations of Boolean rings and Boolean lattices. Matematicheskie zametki [Mathematical Notes], 1993, V. 53. No. 2. Pp. 15–24.
  25. Bogdalov I. F. Invertibility of the Hilbert basis theorem in the class of semirings. Problemy sovremennogo matematicheskogo obrazovaniya v pedvuzah i shkolah Rossii: Tezisy dokladov Mezhregional’noy nauchnoy konferentsyi [Problems of Modern Mathematics Education
    in Pedagogical Universities and Schools of Russia : Abstracts of the Interregional Scientific Conference], Kirov, Izd. Vyatskogo gospeduniversiteta, 1998. Pp. 171–172.
  26. Il’in S. N. Regularity Criterion for Complete Matrix Semirings. Matematicheskie zametki [Mathematical Notes], 2001, V. 70. No. 3. Pp. 366–374.
  27. Il’in S. N. On the applicability to semirings of two theorems from the theory of rings and modules. Matematicheskie zametki [Mathematical Notes], 2008, V. 83. No. 4. Pp. 563–574.
  28. Il’in S. N. On the homological classification of semirings. Itogi nauki i tehniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory [Results of Science and Technology. Modern Mathematics and its Applications. Thematic reviews], 2018, V. 158. Pp. 3–22.
  29. Dale L. Monic and monic free ideals in polynomial semirings. Proc. Amer. Math. Soc., 1976, V. 56. Pp. 45–50.
  30. Babenko M. V., Chermnykh V. V. On skew polynomial semirings on Bezout semiring. Matematicheskie zametki [Mathematical Notes], 2022, V. 111.
  31. Rao P. R. Lattice ordered semirings. Math. Sem. Notes, Kobe Univ., 1981, V. 9. Pp. 119–149.
  32. Swamy K. L. N. Duallity residuated lattice ordered semigroups. Math. Ann., 1965, V. 159. Pp. 105–114.
  33. Chermnykh O. V. On drl-semigroups and drl-semirings) Chebyshevskiy sbornik [Chebyshev collection], 2016, V. 17. No. 4. Pp. 167–179.
  34. Burgess W. D., Stephenson W. Pierce sheaves of noncommutative rings. Comm. Algebra, 1976, V. 39. Pp. 512–526.
  35. Grothendieck A., Dieudonne J. El´ements de G´eom´etrie ´ Alg´ebrique 1. I.H.E.S., Publ. Math. 4. — Paris, 1960.
  36. Pierce R. S. Modules over commutative regular rings. Mem. Amer. Math. Soc., 1967, V. 70. Pp. 1–112.
  37. Simmons H. Compact representations — the lattice theory of compact ringed spaces. J. Algebra, 1989, V. 126. Pp. 493–531.
  38. Chermnykh V. V. Sheaf representations of semirings. Uspehi matematicheskih nauk [Advances in mathematical sciences], 1993, V. No. 5. Pp. 185–186.
  39. Chermnykh V. V. Functional representations of semirings. Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics], 2012, V. 17. No. 3. Pp. 111–227.
  40. Markov R. V., Chermnykh V. V. On Pierce stalks of semirings. Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics], 2014, V. 19. No. 2. Pp. 171–186.
  41. Markov R. V., Chermnykh V. V. Semirings close to regular and their Pierce stalks) Trydy IMM UrO RAN [Proceedings of IMM UB RAS], 2015, V. 21. No. 3. Pp. 213–221.
  42. Babenko M. V., Chermnykh V. V. Pierce stalks of semirings of skew polynomials. Trydy IMM UrO RAN [Proceedings of IMM UB RAS], 2021, V. 27. No. 4. Pp. 48–60.
  43. Chermnykh V. V., Chermnykh O. V. Functional representations of lattice-ordered semirings. Sibirskie elektronnye matematicheskie izvestiya [Siberian Electronic Mathematical News], 2017, V. 145. Pp. 946–971.
  44. Chermnykh O. V. Functional representations of lattice-ordered semirings. III. Sibirskie elektronnye matematicheskie izvestiya [Siberian Electronic Mathematical News], 2018, V. 15. Pp. 677–684.
  45. Chermnykh V. V., Chermnykh O. V. Functional representations of lattice-ordered semirings. III. Trydy IMM UrO RAN [Proceedings of IMM UB RAS], 2020, V. 26. No. 3. Pp. 235–248.
  46. Polin S. V. Minimal varieties of semirings. Matematicheskie zametki [Mathematical Notes], 1980, V. 27. No. 4. Pp. 527–537.
  47. Pastijn F. Varieties Generated by Ordered Bands. II. Order., 2005, V. 22. Pp. 129−143.
  48. Guterman A. E. Frobeniusovy endomorfizmy prostranstva matrits: dissertatsiya na soiskanie uchenoy stepeni doktora fiziko-matematicheskih nauk [Frobenius endomorphisms of the matrix space: dissertation for the degree of Doctor of Physics and Mathematics], M.: MSU, 2009. 321 p.
  49. Shitov Ya. N. Lineynaya algebra nad polukoltsami: dissertatsiya na soiskanie uchenoy stepeni doktora fiziko-matematicheskih nauk [Linear algebra over semirings: dissertation for the degree of Doctor of Physics and Mathematics], M.: MSU, 2015. 302 p.
  50. Krivulin N. K. On the solution of generalized linear vector equations in idempotent algebra. Vestnik Sankt-Peterburgskogo universiteta. Seriya 1 [Bulletin of Saint Petersburg University. Series 1], 2006. No.Pp. 23–36.
  51. Krivulin N. K., Romanova E. Yu. Approximate factorization of positive matrices using tropical optimization methods. Vestnik SanktPeterburgskogo universiteta. Seriya 10 [Bulletin of Saint Petersburg University. Series 10], 2020, V. 16. No. 4. Pp. 357–374.
  52. Vorob’ev N. N. Extreme algebra of positive matrices. Elektronische Informatiosverarbeitung und Kybernetik [Electronic information processing and cybernetics], 1967, V. 3. Pp. 39–71.
  53. Joswig M. Essentials of Tropical Combinatorics. Graduate Studies in Mathematics. V. 219, 2021. 398 p.
  54. Maslov V. P., Kolokol’tsov V. N. Idempotentnyi analiz i ego primenenie v optimal’nom upravlenii [Idempotent analysis and its application in optimal control], M.: Nauka, 1994.
  55. Gondran M., Minoux M. Graphs, Dioids and Semirings. New Models and Algorithms. New York: Springer, 2008. 400 p.
  56. Kolokoltsov V. N., Maslov V. P. Idempotent Analysis and its Applications. Mathematics and its Applications, V. 401, Dordrecht: Kluwer Academic Publishers, 1997.
  57. Litvinov G. L., Maslov V. P., Shpiz G. B. Idempotent functional analysis: an algebraic approach. Matematicheskie zametki [Mathematical Notes], 2001, V. 69. No. 5. Pp. 758–797.
  58. Gillman L., Jerison M. Rings of continuous functions. New York,300 p.
  59. Varankina V. I., Vechtomov E. M., Semenova I. A. Semirings of continuous non-negative functions: divisibility, ideals, congruences. Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics], 1998, V. 4. No. 2. Pp. 493–510.
  60. Vechtomov E. M., Lubyagina E. N., Sidorov V. V., Chuprakov D. V. Elementy funktsionalnoy algebry: monografiya. V 2 tomah [Elements of functional algebra: monography. In 2 volumes] [edited by Vechtomov], Kirov, OOO «Raduga-PRESS», 2016, V. 1, 384 p.; V. 2. 316 p.
  61. Vechtomov E. M., Mikhalev A. V., Sidorov V. V. Semirings of continuous functions Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics], 2016, V. 21. No. 2. Pp. 53– 131.
  62. Vechtomov E. M., Chuprakov D. V. The principal kernels of semifields of continuous positive functions. Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics],
    2008, V. 14. No. 4. Pp. 87–107.
  63. Vechtomov E. M., Chuprakov D. V. Extension of congruences on semirings of continuous functions. Matematicheskie zametki [Mathematical Notes], 2009, V. 85. No. 6. Pp. 803–816.
  64. Bestuzhev A. S., Vechtomov E. M. Cyclic semirings with commutative addition.Vestnik Syktyvkarskogo universiteta. Seriya Matematika. Mehanika. Informatika [Bulletin of the Syktyvkar University. Series 1. Mathematics. Mechanics. Informatics], 2015, V.Pp. 8–39.
  65. Vechtomov E. M., Chuprakov D. V. Finite cyclic semirings with semilattice addition given by the two-generated ideal of natural numbers. Chebyshevskiy sbornik [Chebyshev collection], 2020, V. 21. No. 1. Pp. 82–100.
  66. Vechtomov E. M., Orlova (Lubyagina) I. V. Cyclic semirings with idempotent noncommutative addition. Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics],
    2012, V. 17. No. 1. Pp. 33–52.
  67. Vechtomov E. M., Orlova I. V. Cyclic semirings with idempotent commutative addition. Fundamentalnaya i prikladnaya matematika [Fundamental and Applied Mathematics], 2015, V. 20. No. 6. Pp. 17– 41.
  68. Bestuzhev A. S., Vechtomov E. M., Orlova I.V. Structure of cyclic semirings. Sbornik materialov IX nauchnoy konferentsii EKOMOD-2016 “Matematicheskoe modelirovanie razvivayuscheysya
    ekonomiki, ekologii i tehnologii” [Proceedings of the IX Scientific Conference ECOMOD-2016 “Mathematical modeling of developing economy, ecology and technology”], Kirov: Izd. VyatGU, 2016. Pp. 21–30.
  69. Vechtomov E. M., Petrov A. A. Multiplicatively idempotent semirings with three elements. Matematicheskiy vestnik Vyatskogo gosudarstvennogo universiteta [Mathematical Bulletin of Vyatka State University], 2021. No. 2. Pp. 13−23.
  70. Zhao X., Ren M., Crvenkovic S., Shao Y., Dapic P. The varietygenerated by an ai-semiring of order three. Ural Mathematical Journal,2020, V. 6. No. 2. Pp. 117–132.

For citation: Vechtomov E. M., Chermnykh V. V. Main directions of the development of the semiring theory. Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics, 2021. No. 4 (41), pp. 4−40. DOI: 10.34130/1992-2752_2021_4_4

II. Andryukova V. Yu. Variational approach to calculating critical loads in the case of spatial deformation of curved rods

DOI: 10.34130/1992-2752_2021_4_41

Andryukova Veronika Yuryevna − Associate Professor, Komi Science Center, Ural RAS Department, e-mail: veran@list.ru

Text

A detailed derivation of the formulas of elastic energy and work of external forces for rings loaded with central forces is given. xpressions for calculating the critical load are presented in the case of plane deformation of the ring, as well as in the case of the spatial form of buckling.

Keywords: curvilinear bar, critical load, stability, Euler equations, work of external forces, elastic energy

References

  1. Perel’muter A. V., Slivker V. I. Ustoychivost’ ravnovesiya konstruktsiy i rodstvennyye problemy [Stability of the structures equilibrium and related problems]. Vol. 2. Moscow, Izdatel’stvo SKAD SOFT, 672 p.
  2. Nikolai Ye. L. Trudy po mekhanike [Writings on mechanics]. Moscow, Gostekhizdat, 1955. 584 p.
  3. Andryukova V., Tarasov V. Nonsmooth problem of stability for elastic rings. Abstracts of the International Conference “Constructive Nonsmooth Analysis and Related Topics” Dedicated to the Memory of Professor V.F. Demyanov. CNSA-2017. 22-27 may 2017, Part I. SaintPetersburg. Publisher: BBM. Pp. 213–218.
  4. Birger I. A. Prochnost’. Ustoychivost’. Kolebaniya [Strength. Stability. Oscillations]. M.: Mashinostroenie, 1988. 831 p.

For citation: Andryukova V. Yu. Variational approach to calculating critical loads in the case of spatial deformation of curved rods. Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics, 2021, No. 4 (41), pp. 41−49. DOI: 10.34130/1992-2752_2021_4_41

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

III. Yermolenko A. V., Melnikov V. A. Solving the problem of abstraction from platform-specific code for iOS and Android applications using the example of SadLion Engine

DOI: 10.34130/1992-2752_2021_4_50

Yermolenko Andrei Vasilievich − PhD in Physics and Mathematics, Associate Professor, Head of Department of Applied Mathematics and Computer Science, Pitirim Sorokin Syktyvkar State University, e-mail: ea74@list.ru

Melnikov Vadim Andreevich − Postgraduate student, Pitirim Sorokin Syktyvkar State University, e-mail: ea74@list.ru

Text

The paper examines existing solutions for cross-platform mobile development, compares their features, advantages and disadvantages. It describes the solution to various problems arising in the development of your own cross-platform engine for development for iOS and Android.
The construction of a system for displaying a visual interface on a user screen using a GPU is considered. The architectural solutions used to write high-performance logic of application behavior in the C ++ programming language are described. The life cycles of applications for the iOS and
Android platforms are considered and a way to abstract from the native life cycle is proposed to generalize the application code on both platforms.The implementation of interlanguage interaction between Java and C ++ using JNI on the Android platform and Objective-C and C ++ is described,
architectural solutions are given for building an abstraction layer that hides such low-level interactions in the engine core.

Keywords: cross-platform development, C ++, Android, iOS.

References

  1. Bosnic S., Papp I. The development of hybrid mobile applications with Apache Cordova. 24th Telecommunications Forum. 2016. Pp. 1−4.
  2. Tomozei C. Assessment of the evolution in quality for XamarinAndroid Multimedia Applications. 19th International Conference on Informatics in Economy. Education, Research and Business
    Technologies. 2020. Pp. 47−52.
  3. Melnikov V. A. Development Process of game engine core for 2D games and interfaces Sad Lion Engine. Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mexanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics], 2019, 4
    (33). Pp. 21–37.
  4. Fisz K., Kopniak P., Galan D. A multi-criteria comparison of mobile applications built with the use of Android and Flutter Software Development Kits. Journal of Computer Sciences Institute. Vol. 19.Pp. 107−113.
  5. Dabit N. React Native in action. Shelter Island: Manning Publishing. 320 p.
  6. Java Native Interface Specification [Online]. Oracle. Available: https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/ jniTOC.html (Accessed: 22.10.2020).
  7. Rago S., Stevens W. Advanced programming in the UNIX environment, 3rd ed. Upper Saddle River, NJ, Boston, Indianopolis, San Francisco, New York, Toronto, Montreal, London, Munich, Paris, madrid, Capetown, Sydney, Tokyo, Singapore, Mexico City: AddisonWesley, 2013. 1032 p.
  8. Corbet J., Kroah-Hartman G., McKellar J., Rubini A. Linux device drivers, 4th ed. Beijing, Cambridge, Farnham, Koln, Sebastopol, Taipei, Tokyo. 2017. 600 p.
  9. Thornsby J. Android UI design. Birmingham: Packt Publishing. 2016. 356 p.
  10. Anugerah M. A., Sekar G. S. Designing Android User Interface for University Mobile Library. International Conference on Computing, Engineering, and Design (ICCED). 2021. Pp. 224−229.
  11. Neuburg M. Programming iOS 13: Dive Deep into Views, View Controllers, and Frameworks. Sebastopol: O’Reilly. 2020. 1208 p. New York: Oracle.
  12. Nystrom R. Game programming patterns. San Bernardino: Genever Benning, 2018. 345 p.
  13. Ginsburg D., Purnomo B. OpenGL ES 3.0 Programming Guide 2nd Edition. Upper Saddle River, NJ, Boston, Indianopolis, San Francisco, New York, Toronto, Montreal, London, Munich, Paris,
    madrid, Capetown, Sydney, Tokyo, Singapore, Mexico City: AddisonWesley, 2014. 560 p.
  14. Sellers G. Vulkan Programming Guide. The Official Guide to Learning Vulkan. Boston, Columbus, Indianapolis, New York, San Francisco, Amsterdam, Cape Town Dubai, London, Madrid, Milan, Munich, Paris, Montreal, Toronto, Delhi, Mexico City San Paulo, Sydney, Hong
    Kong, Seoul, Singapore, Taipei, Tokyo: Addison-Wesley, 2017. 480 p.
  15. Clayton J. Metal programming guide. Addison-Wesley. 2018. 352 p.
  16. Stroustrup B. The C++ programming languege 4th edition. Uppder Saddle River, Boston, Indianopolis, San Francisco, New York, Toronto, Montral, London, Munich, Paris, Madrid, Capetown, Sydney, Tokyo, Singapore, Mexico city: Addison-Wesley. 2013. 1345 p.
  17. Stroustrup B. Programming: Principles and Practice using C++. 2nd Edition. New Jearsey: Pearson Education. 2015. 1312 p.
  18. Shieldt H. Java: The Complete Reference, Eleventh Edition 11th Edition. 2019. 1248 p.

For citation: Yermolenko A. V., Melnikov V. A. Solving the problem of abstraction from platform-specific code for iOS and Android applications using the example of SadLion Engine. Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics, 2021, No. 4 (41), pp. 50−69.
DOI: 10.34130/1992-2752_2021_4_50

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

IV. Dorofeev S. N., Esetov E. N., Nazemnova N. V. Analogy as the basis for teaching students the vector method of geometric problem solving

DOI: 10.34130/1992-2752_2021_4_70

Dorofeev Sergey Nikolaevich – Doctor of Pedagogy, Professor of the Department of Higher Mathematics and Mathematical Education, Togliatti State University (Russia, 445020, Samara Region, Tolyatti, Belorusskaya St., 14)

Esetov Yelzhan Nurlykhanovich – postgraduate student of the department “Higher Mathematics and Mathematical Education” Togliatti State University (Russia, 445020, Samara region, Tolyatti, Belorusskaya st., 14)

Nazemnova Natalia Vladimirovna − Candidate of Pedagogical Sciences, Senior Lecturer, Department of Higher Mathematics, Penza State University (Russia, 440020, Penza region, Penza, Krasnaya st., 40

Text

This article examines the ways and the methods that contribute to improving the quality of teaching students the basics of vector algebra and methods of their application to solving geometric problems. For this purpose, the necessary knowledge of the basics of vector algebra, which students should learn in the process of studying the topic “Fundamentals of
vector algebra”, is highlighted and systematized. The paper substantiates the fact that such a method of cognition as analogy plays an important role in the effectiveness of the process of
teaching high school students to apply the basics of vector algebra to solving geometric problems. Some examples of interrelated tasks that contribute to improving the quality of teaching students the use of the vector method are given.

Keywords: Vector method, training in solving geometric problems, analogy.

References

  1. Boltyanskij V. G. Analogy — commonality of axiomatics. Sovetskaya pedagogika [Soviet pedagogy], 1975. No. 1. Pp. 83−93.
  2. Dorofeev S. N. Teoriya i praktika formirovaniya tvorcheskoj aktivnosti budushhix uchitelej matematiki v pedagogicheskom vuze, dissertaciya na soiskanie uchenoj stepeni doktora pedagogicheskix nauk [The theory and practice of forming the creative activity of future
    teachers of mathematics in a pedagogical university], Penza, 2000. 410 p.
  3. Atanasyan L. S., Butuzov V. F., Kadomcev S. B. et al. Geometriya. 7−9 klassy [Geometry. 7-9th grade]. M.: Prosveshhenie, 384 p.
  4. Aleksandrov A. D., Verner A. L., Ry‘zhik V. I. Geometriya. 9 klass [Geometry. 9th grade]. M.: Prosveshhenie, 2015. 175 p.
  5. Atanasyan L. S., Butuzov V. F., Kadomcev S. B. et al. Geometriya. 7−9 klassy [Geometry. 7-9th grade]. M.: Prosveshhenie, 255 p.
  6. Dorofeev S. N., Zhuravleva O. N., Ry‘bina T. M., Sarvanova Zh. A. Formation of research competencies of students in the mathematics classroom. Sovremenny‘e naukoemkie texnologii
    [Modern knowledge-intensive technologies]. 2018. No. 10. Pp. 181−185.
  7. Uteeva R. A. Teoreticheskie osnovy‘ organizacii uchebnoj deyatel‘nosti uchashhixsya pri differencirovannom obuchenii matematike v srednej shkole. Dissertaciya doktora ped. nauk [Theoretical foundations of the organization of students’ learning activities in differentiated learning of mathematics in high school]. Moscow, 1998. 363 p.
  8. Kudryavcev L. D. Mysli o sovremennoj matematike i ee izuchenii [Thoughts on Modern Mathematics and its Study]. M.: Nauka, 1977. 123 p.
  9. Dorofeev S. N. UDE as a method of preparing future bachelors of teacher education for professional activities. Gumanitarny‘e nauki i obrazovanie. MordGPI im. M. E. Evsev‘eva [Humanities and Education / M. E. Evsevyev Mordovian State Pedagogical University].
    No. 1, 2013. Pp. 14−17.
  10. Sarancev G. I. Kak sdelat‘ obuchenie matematike interesny‘m [How to make learning math interesting]. M.: Prosveshhenie. 2011. 160 p.
  11. Dorofeev S., Pavlov I., Shichiyakh R., Prikhodko A. Differentiated Training as a Form of Organization of Education and Cognitive Activity of Future Masters of Pedagogical Education.
    Applied Lingvistics Research Jounal, 2021, 5(3), Pp. 216−222.

For citation: Dorofeev S. N., Esetov E. N., Nazemnova N. V. Analogy as the basis for teaching students the vector method of geometric problem solving. Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics, 2021, No. 4 (41), pp. 70−82. DOI: 10.34130/1992-2752_2021_4_70

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

V. Yermolenko A. V., Belyaev E. A., Turkova O. I. One contact problem for two plates

DOI: 10.34130/1992-2752_2021_4_83

Yermolenko Andrei Vasilievich − PhD in Physics and Mathematics, Associate Professor, Head of Department of Applied Mathematics and Computer Science, Pitirim Sorokin Syktyvkar State University, e-mail: ea74@list.ru

Belyaev Evgeniy Anatolievich − Postgraduate student, Pitirim Sorokin Syktyvkar State University, e-mail: ea74@list.ru

Text

Using the generalized reaction method, a numerical solution of the contact problem for two plates is given. One plate is hinged, the other one is rigidly fixed. It is shown that the distribution of contact reactions significantly depends on the relative position of the plates. In this case, the contact zone is either a segment or a point.

Keywords: plate, contact problem, generalized reaction method, numerical solution.

References

  1. Yermolenko А. V., Ladanova S. V. Contact problem for two plates with different fixing. Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mexanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics], 2020, 3 (36). Pp. 87- 92.
  2. Ермоленко А. В. Kontaktnye zadachi so svobodnoj granicej [Free Boundary Contact Problems]. Syktyvkar: Izd-vo SGU im. Pitirima Sorokina, 2020. (CD-ROM). 105 p.
  3. Yermolenko A. V., Osipov K. S. On using Python libraries to calculate plates. Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mexanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics], 2019, 4 (33). Pp. 86–95.
  4. Mihajlovskii E. I., Toropov A. V. Matematicheskiye modeli teorii uprugosti [Mathematical models of the theory of elasticity]. Syktyvkar: Sykt Publishing House. University, 1995. 251 p.
  5. Mikhailovskii E. I., Tarasov V. N. On the convergence of the generalized reaction method in contact problems with a free boundary. Jurnal prikladnoy matematiki i mekhaniki [Journal of Applied Mathematics and Mechanics], 1993, v. 57, No. 1. Pp. 128–136.

For citation: Yermolenko A. V., Belyaev E. A., Turkova O. I. One contact problem for two plates . Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics, 2021. No. 4 (41), pp. 83−89. DOI: 10.34130/1992-2752_2021_4_83

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

VI. Rogosin S. V. Remark to the paper

DOI: 10.34130/1992-2752_2021_4_90

Rogozin Sergey Vasilyevich − PhD in Physics and Mathematics, Associate Professor at the Department of Analytical Economics and Econometrics, Belarusian State University, Minsk, Belarus, e-mail: rogosin@bsu.by

Text

An assertion on p. 31 “Note that X(z) is a rational matrix which is analytic outside of the unit disc (but not necessary analytic at infinity) since. . . ” is imprecise. This assertion including the expression after it be omitted since on the first stage of factorization the corresponding
transformation is performed only on the unit circle and does not involve any analyticity properties of the matrix X(z).

For citation: Rogosin S. V. Remark to the paper. Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics, 2021. No. 4 (41), pp. 90−91. DOI: 10.34130/1992-2752_2021_4_90

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

Bulletin 17 2013

I Andrykova V. Yu., Tarasov V. N. On the stability of rod with one-sided restrictions on the moving

Text

II Kostyakov I. V., Kuratov V. V. Contractions of Lagrangian in calssical mechanics

Text

III Mikhailovskii E. I., Korablev A. J. The longitudinal stability of a cylindrical cover supported by stringers in a multimoduls elastic surroundings

Text

IV Pevnyi A. B., Kotelina N. O. Complex spherical semidesigns

Text

V Vechtomov E. M., Petrov A. A. Multiplicative idempotent semirings with identity x+2xyx=x

Text

VI Ilchukov A. S. Singular integral with Cauchy kernel in spaces defined by modulus of continuity

Text

VII Mekler A. A. Multiplicativity of Marcinkiewicz Modulars. Tables of Bases

Text

VIII Mekler A. A. On semigroup of Marcinkiewicz Modulars.

Text

IX Moskin G. V., Nikitenkov V. L., Sitkarev G. A. Synthesis of perspective transformation matrix

Text

X Nikitenkov V.L., Koyushev P.I.Stability of a rod in a medium with linearly varying rigidity (solution using power series)

Text

XI Nikitenkov V.L., Pobrey A. A. Scanned text binarization and segmentation

Text

XII Odynec V. P. About Boris Zakharovich Vilikh – hereditary mathematician and typical St. Petersburg born and bred citizen (To centenary anniversary of his birth)

Text

Bulletin 16 2012


I To the 25th anniversary of the MMIK department

Text

II Belyaeva N. A. Internal stresses symmetric products in their formation based nonzero critical depth conversion

Text

III Belyaeva N. A., Pryanishnikova E. A. Thr averaging method in the problem of mathematical modeling of composite extrusion

Text

IV Belyayev Yu. N. Symmetric polynomias in the calculation of the matrix exponential

Text

V Mikhailovskii E. I. The half century with the mechanics of shells (Part II – the nonlinear theory)

Text

VI Nikitenkov V. L., Kholopov A. A. Stability of a flexible core in elastic enviroment

Text

VII Grytczuk A. An effective algoritm to peivate-key in the RSA cryptosystem

Text

VIII Markov R. V., Chermnykh V. V. Pierce chains for semirings

Text

IX Mekler A. A. On Marcinkiewicz Modulars on [0, 1] and [0, ∞) – II

Text

X Orlova I. V. About finite cyclic semirings with nonidempotent non-commutative addition

Text

XI Martynov V. A., Mironov V. V. The problem of the optimization of the standart sorting through technology MPI

Text

Bulletin 15 2012


I A word about Mikhailovsky Evgeny Ilyich

Text

II Prof. EI Mikhailovsky from prof. V. F. Demyanova

Text

III Mikhailovskii E. I. Mechanics of shells

Text

IV Belyaeva N. A., Pryanishnikova E. A. Mathematical modeling in the extrusion

Text

V Yermolenko A. V. On analitical solution of the contact problem

Text

VI Maloxemov V. N. On the fortieth anniversary of MDM-method

Text

VII Tarasov V. N., Andryukova V. Yu. On stability behavior of a toroidal shell with a one-sided reinforcement

Text

VIII Vechtomov E. M., Lubiagina E. N. Semirings of sc-functions

Text

IX Golovneva E. V. A class of matrices with diagonall domination

Text

X Grytczuk A. Ankeny, Artin and Chowla conjecture for even generators

Text

XI Mekler A. A. On Marcinkiewicz Modulars on [0, 1] and [0,∞)

Text

XII Mironov V. V., Mayburov A. S. The method of nonlinear integral equations in the problem of bending of a closed cylindrical shell with rigidly clamped edges

Text

XIII Nikitenkov V. L., Jidkova O. A., Shekhurdina E. S. The boundaries of finding the critical force in the environment multimoduls

Text

XIV Popova N. K., Ogirchyk T. A. 3D animation and simulation of an object with Autodesk 3ds Max 2009

Text

XV Odynec W. P. Returning to H. Kummer

Text

XVI Poroshkina A.A., Poroshkin A.G. Three counterexamples in analysis

Text

Bulletin 5 2005

I Luca F., Odyniec W.P. The characterisation of Van Kampmen-Flores complexes by means of system of diopantine equations

Text

II Poroshkin A. G. On the problem of order continuity of Choquet functional

Text

III Andryukova V. Yu., Tarasov V. N. Some problems of stability of elastic system

Text

IV Antonova N. A. Dynamics of two demensional pulse-width modulated control system

Text

V Belyaeva N. A., Gorst D. L., Khudaev S. I. Cuat nonuniform flow of the structured liquid

Text

VI Golovach P. A. L(2,1)-coloring of precolored cacti

Text

VII Mikhailovskii E. I., Ermolenko A. V., Mironov V. V. Elements of the applied tensor analysis in the deformed bodies

Text

VIII Mikhailovskii E. I., Nilitenkov V. L., Chernykh K. F. On some aspects of the account of transversal deformations in the theory of shells and plates

Text

IX Pevnyi A. B. Multiresolution analysis in the space of square summable discrete signals

Text

X Poleshikov S. M., Kholopov A. A. The problem of optimal positions for a triple of four-dimensional orts

Text

XI Kholmogorov D. V. Supercritical behavior of a substantianed plate

Text

XII Khudyaev S. I. Symmetrical flaming on phase transform conditions

Text

XIII Chernykh K. F. On anisotropic nonlinear elasticity

Text

XIV Mikhailovskii E. I., Osipova O. P. About one a form of dynamic equilibrium of compressed part for drill column

Text

XV Mikhailovskii E. I., Tulubenskaya E. V. The influence of transversal deformation on the frequency spectrum of round plate

Text

XVI Somorodnitski A. A., Kotelina N. O. Systems of generators in measure spaces

Text

XVII Somorodnitski A. A., Muravjev A. A. Kakutani-Oxtoby theorem in the non-separable

Text

XVIII Tarasov V. N., Loginov I. N. The influence of boundary conditions to lamina’s stability with rigid constraints on displacement

Text

XIX Kholopov A. A., Stenina N. A. A continuous model of equipment replacing problem

Text

XX Zvonilov V. I. Rigid isotopy classificatin of real algebraic curves of bidegree (4,3) on a hyperboloid

Text

Bulletin 4 2001

I Bazhenov I. I. Atoms of set families and of vectors measures

Text

II Poroshkin A. A., Poroshkin A. G. On the topology generated by the collection of quasi-norms

Text

III Poroshkin A. A., Shergin Yu. V. On the Choquet functional and one its application in measure theory

Text

IV Timofeev A. Y., Cyvunina T. E. The problem of Ricaman-Hilbert for the generalized Cauchy-Riemann system with a singularity

Text

V Tikhomirov A. N. On the Central Limit Theorem

Text

VI Kholopova M. A. Generalized Caushy problem for the American Put option cost

Text

VII Yurchenko V. A. Limit theorems for wavelet-statistics

Text

VIII Antonova N. A. T-periodic models in linear integral pulse-width modulated control system

Text

IX Belyaeva N. A., Parshukova N. N. A thermoviscoelastic model of a spherical product hardering

Text

X Colovach P. A., Fomin F. V. Search and node search number of dual graphs

Text

XI Zheludev V. A., Pevnyi A. B. Lifting schemes for wavelet transform of discrete signals

Text

XII Karmanov O. G. Group analysis and invariant solutions of Carman equations

Text

XIII Mikhailovskii E. I., Ermolenko A. V. On the question of soft-flexible shells bending

Text

XIV Nikitenov V. L. Rarefied matrixes in problems of shell theory

Text

XV Khudyaev S. I., Koynova L. V. Approximate solution of the equation of V. A. Ambartsumyan

Text

XVI Afanasyev A.P., Gaverdovskiy V.S., Kuzivanova N.S.Automated geographic information system of etymologized geographical names of the Komi Republic

Text

XVII Gaverdovskiy V.S., Gerasimov E.P. Objective-oriented software package for developing applications in the environment of GIS technologies

Text

XVIII Ermakov A.A., Prokhorov V.N., Stepanenko V.I.Automated system of cadastres of natural resources of the Komi Republic

Text

XIX Polshvedkin R.V., Serov A.V., Stepanenko V.I., Prokhorov V.N., Gerasimov E.P., Popova O.I.Preparation for the reception and use of space information by means of GIS technologies in the forestry of the Republic Komi

Text

XX Serov A.V. Object identifier systems and work with them

Text

XXI Serov A.V. Review of the possibilities of using three-dimensional elevation models for solving various applied problems

Text

XXII Ezovskih V. E. Fast algorithm for transformation of lattices

Text

XXIII Sheyin A. A., Milnikov A. V. Optimal parametrs for samples processing

Text

XXIV Vityazeva V.A.Glare of informatization

Text

XXV Alexander Grigorievich Poroshkin (on the occasion of his seventieth birthday)

Text

XXVI Alexander Alekseevich Vasiliev (on the occasion of his fiftieth birthday)

Text

XXVII Tarasov Vladimir Nikolaevich (on the occasion of his fiftieth birthday)

Text

Bulletin 3 1999

I Bazhenov I. I. The property of nonatomicity under some constractions of nonatomic vector measures

Text

II Bobkov S. G. Remarks on Gromov-Miliman’s inequality

Text

III Ekisheva S. V. The Bahadir representation of sample quantile for sociatedstochastic sequence

Text

IV Zhubr A. V. The bordism groups of spin-maps and their application to the problem of classification of 6-manifolds

Text

V Zvonilov V. I.Rigid isotopy classification of real algebraic curves of bidigree (4,3) on a hyperboloid

Text

VI Karmanov O. G. Group analysis of Durbreil-Jacotin’s equations

Text

VII Lovyagin Y. N. About one class of the Boolean algebras

Text

VIII Lovyagin Y. N., Matveeva O. P. Classification of the Boolean algebras with sufficient number (o)-continuous kwasimeasures

Text

IX Samorodnitski A. A. Some questions of Lebesgue-Rohlin spaces theory

Text

X Antonova N. A. Dynamic of one dimentional pulse-width modulated control systems

Text

XI Golovach P. A. Invariants of graphs defined through optimal numbering of vertexes and the operation of join of graphs

Text

XII Zheludev V. A., Pevnyi A. B. On the cardinal interpolation by discrete splines

Text

XIII Kasev D. W., Khudyaev S. I. Analysis of spontaneous ignition conditions for cylinder with thermal insulated hole

Text

XIV Mikhailovskii E. I., Badolkin K. V., Ermolenko A. V. The plane plate bending theory of Karman’s type without Kirchhoff’s hypothesis

Text

XV Mikhailovskii E. I., Ermolenko A. V. Refiniment of nonlinear quasi Kirhhoffian K. Chernykh’s theory of shells

Text

XVI Poleshchikov S. M. The regularization of motion equations of fivedimentional Kepler problem

Text

XVII Tarasov V. N. Stability of hingle-fixed lamina with one-sided constrains on displacement

Text

XVIII Ezovskih V. E. Lowering the degree of Bezier curves

Text

XIX Student scientific conference in memory of F. A. Babushkin

Text

XX Poet and scientist: he worked both in poetry and in mathematics (for the 90th birthday of Professor N.A.Frolov)

Text

XXI Report at the plenary session of the scientific conference of graduate students and students dedicated to N.A.Frolov

Text

XXII Vladimir Dmitrievich Yakovlev (on his fiftieth birthday)

Text

Bulletin 2 1996

I Bazhenov I. I, Extreme points of the range of Liapunov vector measure

Text

II Zhubr A. V. Calculation of spin bordism groups of some Elenberg-MacLane spaces, II

Text

III Zhubr A. V. KS-transformations and involutions of normed algebras

Text

IV Isakov V. N. On the problem of countable addivity of the abstract measures product

Text

V Poroshkin A. A. On the inclusion of generalised Boolean algebra to Boolean algebra

Text

VI Samorodnitski A. A. Basic conceptions of Lebesgue-Rohlin space theory. Measure theory on subspaces of generalized Cantor discontinuum

Text

VII Tichomirov A. N. The rate of convergence in the central limit theorem for weakly dependet random variables

Text

VIII Antonova N. A. Chaos and order in an integral pulse-width control systems

Text

IX Belyaeva N. A., Klichnikov L. V. Integral equation method in the volume hardering problem

Text

X Golovach P. A. Pathwidith and treewidth of joining of two graphs

Text

XI Kirushev V. A. The quadratic variational problem with nonnegativity condition

Text

XII Mikhailovskii E. I. The noncoordinate method of obtaining of the conjuctive couples of the tensors

Text

XIII Nikitenkov V. L. Elastic curve of an axis of multisupport cylindrical vessel of pressure at a thermo-mechanical bend and extreme problems connected with it

Text

XIV Pevnyi A. B. Discrete periodic splines and solutions of the problem concerning infinite cylindrical shell

Text

XV Poleshchikov S. M., Kholopov A. A. Generalized KS-transformations of 4-th order

Text

XVI Sokolov V. Ph. Robust performance of linear controller for linear discrete plant in l1-setting

Text

XVII Kholopov V. M. , Khudyaev S. I. To asymptotic theory of combustion wave in gases

Text

XVIII Ermolenko A. V. On the semideformational variant of the boundary values in Karman’s theory of the flexible plates

Text

XIX Martynov Y. I. The determining equations in the contact problem for bending of plate on the theory of Timoshenko

Text

XX Teryohin D. E. The stability of cylindrical panel with the inside strengthenings

Text

XXI Zinchenko I. L. About one classical problem of variational calculs

Text

XXII Zinchenko I. L., Sangadjieva S. T. Periodicity of a sum of continuous periodic functions

Text

XXIII Poleshchikov S. M. Proper and improper KS-matrices

Text

XXIV 25 years of the Faculty of Mathematics

Text

XXV Evgeny Ilyich Mikhailovsky (on the occasion of his sixtieth birthday)

Text

Bulletin 1 1995

I Bazhenov I. I. On some properties of Liapunov vector measure

Text

II Bobkov S. G. On inequalities of Gross and Talagrand on the discrete cube

Text

III Yekisheva S. V. A uniform Central Limit Theorem for a set-indexed processes

Text

IV Lovyagin J. N. On some questions of nonstandart theory of Kantorovich spaces

Text

VI Poroshkin A. A. On one generalization of the theorem on completeness

Text

VII Poroshkin A. G. On the metrizability of sequental order topology in ordered groups and vector spaces

Text

VIII Ryabinin A. A. On rise of Kantor-Fouries measure on imaginary axis

Text

IX Salnikova T. A. On complete and minimal systems of exponents

Text

X Samorodnitsky A. A. A Boolean principle of exhaustion and a construction of measure spaces

Text

XI Saveliyev L. J. Generational functions in the theory of series

Text

XII Antonova N. A. Chaos and order in pulse-width control systems

Text

XIII Belyaeva N. A., Belyaev Yu. N. The regulation of strained state of forming cylindrical product

Text

XIV Gerasin M. L. Stability of cilyndrical shell with ine-sided support

Text

XV Golovach P. A. On one invariant of graphs defined through optimal numbering of vertices

Text

XVI Kazakov A. Y. The maximazation of the first eigenvalue for the little displacement equation of a composite

Text

XVII Kondratieva T. V., Kholopov V. M. The asymptotic of stationary combustion wave for autocatalitic reaction of the first order

Text

XVIII Mikhailovskii E. I. Nonlinear theory of ridge shells under small trnsversal shears

Text

XIX Nikitenkov V. L. Nonlinear equations for cylindrical shell with eliptic ovality of the cross section

Text

XX Tarasov V. N. The problems on eigenvalues for positively homogeneous operators

Text

XXI Holmogorov D. V. The stability of bar on two elastic surrounding boundary

Text

XXII Kholopov A. A. Minimal stability losing forms of bar placed between elastic and rigid spaces

Text

XXIII Khudyaev S. I. To mathematical theory of flame propagation

Text

Bulletin 4 (37) 2020

I Babenko M. V. On the polynomial semiring over a Bezout semiring

DOI: 10.34130/1992-2752_2020_4_05

Babenko Marina − Senior Lecturer of the Department of applied mathematics and computer science, Vyatka State University, e-mail: usr11391@vyatsu.ru

Text

The article examines a polynomial semiring over a Bezout Rickart semiring. Namely, let all left annihilator ideals of the semiring S be ideals. Then the semiring of polynomials R = S[x] is a semiring without nilpotent elements and every finitely generated left monic ideal from R is principal iff S is a left Rickart left Bezout semiring and any non-zero divisor of the semiring S is convertible to S. This result is analogous to the statement for rings, if the condition each finitely generated left monic ideal of R is principal replaced by R is left Bezout ring. The left monic ideal of a polynomial semiring is a left ideal that contains each monomial of its polynomial. The principal left monic ideals over a left Rickart left Bezout semiring are described.

Keywords: polynomial semiring, Rickart semiring, Bezout semiring, monic ideal.

References

  1. Tuganbaev A. A. Kol’ca Bezu, mnogochleny i distributivnost’ (Bezout rings, polynomials and distributivity) Mathematical notes, 2001, 70:2, pp. 270288.
  2. Dale L. Monic and monic free ideals in polynomial semirings, Proc. Amer. Math. Soc., 1976, No 56, pp. 45-50.
  3. Dale L. The structure of monic ideals in a noncommutative polynomial semirings, Acta Math. Acad. Sci. Hungar, 1982, 39:1-3, pp. 163-168.
  4. Golan J. S. Semirings and their applications, Kluwer Acad. Publ., Dordrecht, 1999.
  5. Chermnykh V. V. Functional representations of semirings, J. Math. Sci., New York, 2012, 187:2, pp. 187-267.
  6. Maslyaev D. A., Chermnykh V. V. Polukol’ca kosyh mnogochlenov Lorana (Semirings of skew Laurent polynomials), Siberian electronic mat. reports., 2020, Vol. 17, pp. 512-533.

For citation: Babenko M. V. On the polynomial semiring over a Bezout semiring, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 4 (37), pp. 5-15.

II Efimov D. B. A method for computing the hafnian

DOI: 10.34130/1992-2752_2020_4_16

Efimov Dmitry − Ph. D., research associate, Institute of Physics and mathematics of the Komi national research center of the Ural branch of the Russian Academy of Sciences, e-mail: dmefim@mail.ru

Text

The hafnian was initially introduced by E.R. Caianiello, by analogy with the Pfaffian, as a convenient mathematical apparatus for working with certain quantum-mechanical quantities. From a combinatorial point of view, the hafnian of a symmetric matrix is equal to the sum of weights of perfect matchings of a graph with the given incidence matrix. In contrast to the Pfaffian, the hafnian has a smaller set of good properties, and determining its value is an example of a complex computational problem. We consider a new method for calculating hafnian of a matrix in terms of permanents of its submatrices. We also give a comparison with other methods in terms of computational complexity. The property underlying the method could also be used outside the context of the computation speed, for example, to estimate the hafnian of a nonnegative matrix based on known estimates of the permanent.

Keywords: hafnian, permanent, computational complexity

References

  1. Caianiello E. R. On quantum field theory – I: Explicit solution of Dyson’s equation in electrodynamics without use of Feynman graphs, IL Nuovo Cimento, 1953, V. 10(12), pp. 1634-1652.
  2. Caianiello E. R. Theory of coupled quantized fields, Supplemento Nuovo Cimento, 1959, V. 14(1), pp. 177191.
  3. Caianiello E. R. Regularization and Renormalization, IL Nuovo Cimento, 1959, V. 13(3), pp. 177-191.
  4. Mink H. Permanenty (Permanents), M.: Mir, 1982, 216 p.
  5. Valiant L. G. The complexity of computing the permanent, Theoretical Computer Science, 1979, V. 8(2), pp. 187-201.
  6. Bjorklund A., Gupt B., Quesada N. A faster hafnian formula for complex matrices and its benchmarking on a supercomputer, ACM Journal of Experimental Algorithmics, 2019, V. 24(1), 17 p.
  7. Aaronson S., Arkhipov A. The computational complexity of linear optics, Proceedings of the Annual ACM Symposium on Theory of Computing, 2011, pp. 333-342.
  8. Kruse R., Hamilton C. S., Sansoni L., Barkhofen S., Silberhorn C., Jex I. Detailed study of Gaussian boson sampling, Physical Review A, 2019, V. 100(3), 032326.

For citation: Efimov D. B. A method for computing the hafnian, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 4 (37), pp. 16-25.

III Gabova M. N., Muzhikova A. V. Ñontext approach in the teaching of mathematics future engineers

DOI: 10.34130/1992-2752_2020_4_26

Gabova Maria − Senior Lecturer of the Department of the Department of higher mathematics, Ukhta state technical University, e-mail: amuzhikova@mail.ru

Muzhikova Alexandra − Ph. D., associate Professor of the Department of the Department of higher mathematics, Ukhta state technical University, e-mail: amuzhikova@mail.ru

Text

There is a problem of reducing the mathematical education of school graduates, and as a result, the lack of motivation and cognitive activity of first-year students when studying mathematics in higher school. Mathematics, devoid of professional direction, is not of interest to most students of a technical higher school. The efectiveness of the teaching process can be achieved by using a context approach. Context teaching is teaching in which the subject and social content of students’ professional activity is modeled in the language of science and with the help of the entire system of forms, methods and means of teaching. Considering context teaching as an integral system that meets the corresponding principles, the article presents the developed methodological and organizational support for educational activities.
The main idea in developing the content is a gradual transition from abstract mathematical concepts to their applied meaning in related sciences, and then to their application in professional fields. The principles of context teaching are best implemented when using active and interactive forms of teaching and their corresponding methods. The most efective methods in terms of achieving the goals of teaching, development and education were shown by such methods as problem-based lecture format, swapping of topics in pairs and partners rotation, paragraph-by-paragraph study of theoretical material in small groups, task swapping in practical classes, etc.
The use of a context approach allows students to develop social interaction, motivation and cognitive activity, mathematical literacy, the ability to apply mathematics in their educational and professional activities and contribute to the formation of a modern engineer capable of creative activity and self-realization.

Keywords: mathematics for engineer, context approach, active and interactive methods of teaching.

References

  1. Kostenko I. P. Evolyuciya kachestva matematicheskogo obrazovaniya (1931-2009 gg.) (Evolution of the quality of mathematics education (1931-2009)), Izvestija VGPU, 2013, No 2 (261), pp. 81-87.
  2. Muzhikova A. V. Matematicheskaya obrazovannost’ studentov: problemy i perspektivy (Mathematical education of students: problems and prospects), XIX mezhdunarodnaja nauchno-prakticheskaja konferencija Kommunikacii. Obshhestvo. Duhovnost’ 2019, Ukhta: UGTU,2019, Vol. 3, pp. 141-144.
  3. Muzhikova A. V., Gabova M. N. Razvitie gramotnoj matematicheskoj rechi studentov v tekhnicheskom vuze (Development of Competent Mathematical Speech of Students in a Technical University), Vysshee obrazovanie v Rossii, 2019, Vol. 28, no. 12, pp. 66-75,.
  4. Rozanova S. A. Matematicheskaja kul’tura studentov tehnicheskih universitetov (Mathematical culture of students of technical universities), Moscow: FIZMATLIT Publ., 2003, 176 p.
  5. Bogomolova E. P. Diagnoz: matematicheskaya malogramotnost’ (Diagnosis: mathematical illiteracy), Matematika v shkole, 2010, No 4, pp. 3-9.
  6. Senashenko V. S., Vostrikova N. A. O preemstvennosti srednego i vysshego matematicheskogo obrazovaniya (On the continuity of secondary and higher mathematics education), Mezhdunarodnaja konferencija Obrazovanie, nauka i jekonomika v vuzah. Integracija v
    mezhdunarodnoe obrazovatel’noe prostranstvo¿, Plock (Poland), 2006, pp. 103-106.
  7. Zajniev R. M. Preemstvennost’ matematicheskoj podgotovki v inzhenerno-tehnicheskom obrazovanii (Continuity of mathematical training in engineering and technical education), Kazan: Kazan State University Publ., 2009, 366 p.
  8. Egorova I. P. Proektirovanie i realizacija sistemy professional’nonapravlennogo obuchenija matematike studentov tehnicheskih vuzov (Design and implementation of a system of professional-oriented learning mathematics to students of technical universities:Cand. Sci.
    Thesis), Tolyatti, 2002, 24 p.
  9. Verbickij A. A. Aktivnoe obuchenie v vysshej shkole: kontekstnyj podhod (Active learning in higher education: context approach), Moscow: Vysshaja shkola Publ., 1991, 207 p.
  10. Grebenkina A. S. Osobennosti kontekstnogo obucheniya vysshej matematike studentov tekhnicheskih special’nostej (Features of context learning of higher mathematics to students of technical specialties), II mezhdunarodnaja nauchno-prakticheskaja konferencija Psihologija
    i pedagogika XXI veka: teorija, praktika i perspektivy, Cheboksary: CNS Interaktiv pljus Publ., 2015, pp. 2430.
  11. Kolbina E. V. Metodika formirovanija matematicheskoj kompetentnosti studentov tehnicheskih vuzov v problemno-prikladnom kontekste obuchenija. Kand. Diss. (Methods of forming mathematical competence of students of technical universities in the problem-applied context of learning: Cand. Diss.), Barnaul, 2016, 221 p.
  12. Janushhik O. V., Sherstnjova A. I., Pahomova E. G. Kontekstnye zadachi kak sredstvo formirovaniya klyuchevyh kompetencij studentov tekhnicheskih special’nostej (Context tasks as a means of forming key competencies of students of technical specialties), Sovremennye problemy nauki i obrazovanija, 2013, No. 6, p. 376.
  13. Pidkasistij P. I. Pedagogika (Pedagogics: textbook for students of pedagogical universities and pedagogical colleges), Moscow: Pedagogicheskoe obshhestvo Rossii Publ., 1998, 640 p.
  14. Nizhnikov A. I., Rastopchina O. M. Obuchenie vysshej matematike: kontekstnyj podhod (Learning higher mathematics: the context approach), Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta, 2018, No 3, ðð. 184-193, doi:10.18384/2310-7219-2018-3-184-
    193.
  15. Sorokopud Ju. V. Pedagogika vysshej shkoly (Pedagogy of Higher School), Rostov-on-Don: Feniks Publ., 2011, 541 p.
  16. Mkrtchjan M. A. Metodiki kollektivnyh uchebnyh zanyatij (Methods of Collective Training), Spravochnik zamestitelja direktora shkoly, 2011, No 1, pp. 5564.
  17. Prudnikova O. M., Gabova M. N., Kaneva E. A. K voprosu formirovaniya u studentov kriticheski-refeksivnogo stilya myshleniya (To the Question of Formation of Students Critical-Refiexive Style of Thinking), Nauchno-tehnicheskaja konferencija, Ukhta: UGTU, 2011, Vol. 3, pp. 226-229.
  18. Muzhikova A. V. Interaktivnoe obuchenie matematike v VUZe (Interactive Teaching of Mathematics in Higher School), Vestnik Syktyvkarskogo universiteta. Serija 1: Matematika. Mehanika. Informatika, 2015, Vol. 1 (20), pp. 74-90.
  19. Muzhikova A. V. Issledovanie efektivnosti kollektivnyh uchebnyh zanyatij po vysshej matematike (Study the Interactive Teaching Efiectiveness in Higher Mathematics), Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta, 2018, No 7 (197), pp. 174-181.
  20. Lobos E., Macura J. Mathematical competencies of engineerin students, In ICEE-2010, International Conference on Engineering Education, July 18-22, 2010, Gliwice, Poland, Silestian University of Technology.
  21. Zeidmane A., Rubina T. Student  Related factor for dropping out in the first year of studies at LLU engineering programmes, Engineering for Rural Development, 2017, N 16, pp. 612-618,.
  22. Steyn T., Plessis I. D. Competence in mathematics-more than mathematical skills?, International Journal of Mathematical Education in Science and Technology, 2007, Vol. 38, Issue 7, pp. 881-890,doi:10.1080/00207390701579472.
  23. Ravn O., Bo Henriksen L. Engineering mathematics in context – learning university mathematics through problem based learning, International Journal of Engineering Education, 2017, Vol. 33, Issue 3, pp. 956-962.
  24. Firouzian S., Kashe H., Yusof Y. M., Ismail Z., Rahman R. A. Mathematical competencies as perceived by engineering students, lecturers, and practicing engineers, International Journal of Engineering Education, 2016, Vol. 33, Issue 6, pp. 2434-2445.

For citation: Gabova M. N., Muzhikova A. V. Ñontext approach in the teaching of mathematics future engineers, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 4 (37), pp. 26-50.

IV Odyniec W. P. The Fate of two mathematicians: Perelman and Perelman Jr.

DOI: 10.34130/1992-2752_2020_4_51

Odyniec Vladimir − Doctor of Physical and Mathematical Sciences, Professor, Syktyvkar state University named after Pitirim Sorokin, e-mail: W.P.Odyniec@mail.ru

Text

In the article the work of Jacob I. Perelman (1882-1942) in the area of mathematics and its application to the theory of elasticity is described for the first time at the ever of the Grand Patriotic War. Also described the life and work of his son Michael J. Perelman (1919-1942).

Keywords: J. I. Perelman, M. J. Perelman, Galerkin method, continuity modulus, the least power and pseudo-power of a topological space.

References

  1. Mishkevich G. I. Doktor zanimatelnyh nauk (Doctor of Entertaining Sciences), M.: Znanie, 1986, 192 p.
  2. Matematika v SSSR za tridcat’ let (The URSS Mathematics for thirty years: 1917-1947), Pod. red. A. G. Kurosha, A. I. Markushevicha, P. K. Rashevskogo, M.-L.: OGIZ, Izd-vo tehn-teor. lit-ry, 1948, 1045 p.
  3. Matematika v SSSR za sorok let (The URSS Mathematics for forty years: 19171957), Biobibliografiya, Vol. 2, M.: Fizmatlit, 1959, 819 p.
  4. Leibenson L. S. Variacionnye metody resheniya sadach teorii uprugosti (Variational methods of solving the problems of the theory of elasticity), M.-L.: 1943, 287 p.
  5. Kniga pamyati. Leningrad. 1941-1945. Primorskii raion T. 12 (The Book of Memory. Leningrad. 1941-1945. The Primorsky District. Vol. 12), SPb: Notabene, 1997, 557 p.
  6. Perelman J. I. Metod Galerkina v variacionnom ischislenii i v teorii uprugosti (Galerkin method in calculus of variations and in the theory of elasticity), Prikladnaya matematika I mehanika, T. V, vyp. 3, 1941, 345-358 p.
  7. Galerkin B. G., Perelman J. I. Napryazheniya i peremeshtcheniya v krugovom zylindricheskom truboprovode (Tensions and Displacements in Cylindrical Pipe Line), Izvestiya nauchno- issledovatelskogo instituta gidrotehniki, T. 27, 1940, pp. 160-192.
  8. Odyniec W. P. O leningradskih matematikah, pogibshih v 1941-1944 godah (On some Leningrad based Mathematicians perished in 1941 -1944), Syktyvkar: Izd- vo SGU im. Pitirima Sorokina, 2020, 122 p.
  9. Blokada 1941-1944. Kniga pamyati, Leningrad, T. 23 (Blockade 1941-1944. The book of Memory, Leningrad, Vol. 23), SPb.:Stella, 2005, 717 p.
  10. Odyniec W. P. K 125-letiu reformatora matematicheskogo obrazovaniya O.A. Volberga (1895-1942) (On the 125 anniversary of reformer of the birth of mathematical education O.A .Volberg (1895-1942), Matematika v shkole (Mathematics in School), 4, 2020, p. 54-59.
  11. Perelman M. J. O module nepreryvnosti analiticheskih funkcii (On the Continuity Modulus of Analytical Functions), Uchenye zapiski LGU. Seriya mat. nauk, vyp. 12, 1941, 62-82 p.
  12. Trudy Pervogo Vsesouznogo s’ezda matematikov (Proceedings of the First All-Union congress of mathematicians), M.-L.: ONTI NKTP SSSR, 1936, 376 p.
  13. Fomin D. V. Sankt- Peterburgskie matematicheskie olimpiady (Saint Petersburg mathematics olympiades), SPb.: Politehnika, 1994, 309 p.
  14. Matematicheskii enciklopedicheskii slovar’ (The Mathematical Encyclopaedia), M.: Soviet Encyclopaedia, 1988, 848 p.
  15. Perelman M. J. Ob odnom svoistve posledovatelnosti polinomov (On one property of sequences of polynomials), Uchenye zapiski LGU. Seriya mat. nauk, vyp. 12, 1941, 83-91 p.

For citation: Odyniec W. P. The Fate of two mathematicians: Perelman and Perelman Jr., Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 4 (37), pp. 51-65.

V Pevnyi A. B., Yurkina M. N. Sieve of Eratosphenes complexity and distribution of primes

DOI: 10.34130/1992-2752_2020_4_66

Pevny Alexander − Doctor of Physics and Mathematics, Professor, Department of Applied Mathematics and Information Technologies in Education, Pitirim Sorokin Syktyvkar State University, e-mail: pevnyi@syktsu.ru

Yurkina Marina − Senior Lecturer, Department of Applied Mathematics and Information Technologies in Education, Syktyvkar State University named after Pitirim Sorokin, e-mail: yurkinamn@gmail.com

Text

Primes are widely used not only in pure mathematics, but also in related disciplines. And although they have been known for a long time, many problems concerning prime numbers are still open and the questions of their study do not lose their relevance. One of the well-known algorithms for finding all primes not exceeding a given N is the sieve of Eratosthenes. To estimate the number of operations required to execute this algorithm, the authors used one result of P. L. Chebyshev. In 1849 P. L. Chebyshev proved a two-sided estimate for the number of primes not exceeding a given N. Based on these estimates, the article establishes that the number of operations in the Eratosthenes algorithm is estimated as O (N ln ln N).

Keywords: sieve of Eratosthenes, primes, Chebyshev.

References

  1. Leandro M., Antonio J. J., Antonio S. F. Multiplication and Squaring with Shifting Primes on OpenRISC Processors with Hardware Multiplier, Journal of Universal Computer Science, 2013, vol. 19, no. 16, pp. 2368-2384.
  2. Krishan K., Deepti S. D. Eratosthenes sieve based key-frame extraction technique for event summarization in videos, Multimedia Tools and Applications, 2018, 77, pp. 7383-7404.
  3. Durfian R. D., Masque M. Optimal strong primes, Information Processing Letters, 2015, 93 (1), pp. 47-52.
  4. Samir B. B., Zardari M. A. Generation of prime numbers from advanced sequence and decomposition methods, International Journal of Pure and Applied Mathematics, Vol. 85 No. 5, 2013, pp. 833-847.
  5. Mohammad G., Ali K. A novel secret image sharing scheme using large primes, Multimedia Tools and Applications, 2018, 77, pp. 11903-11923.
  6. Barzu M., Tiplea F. L., Drfiagan C. C. Compact sequences of coprimes and their applications to the security of CRT-based threshold schemes, Information Sciences, 2013, 240, pp. 161-172.
  7. Popov V. A., Kaneva E. A. Dlinnaya arifmetika v issledovaniyah statistiki pervyh cifr stepenej dvojki, chisel Fibonachchi i prostyh chisel (Long arithmetic in studies of statistics of the first digits of powers of two, Fibonacci numbers and primes), Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2019, 2(31), pp. 91-107.
  8. Kudrina E. V., Kuzmina V. R. Algoritmy nakhozhdeniya prostykh chisel: ot shkoly do vuza (Algorithms for finding prime numbers: from school to university), E-learning in lifelong education: Collection of scientific papers of the III International scientific-practical conference,
    Ulyanovsk: UlSTU, 2016, pp. 1106-1113.
  9. Chebyshev P. L. Izbrannye matematicheskie trudy (Selected mathematical works), M., L.: Ogiz. GOS. Izd-vo tehn.-theoretical lit., 1946, 200 p.
  10. Buchstab A. A. Teoriya chisel (Number theory), M.: Uchpedgiz, 1960, 376 p.

For citation: Pevnyi A. B., Yurkina M. N. Sieve of Eratosphenes complexity and distribution of primes, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 4 (37), pp. 66-72.

VI Popov N. I., Yakovleva E. V. Use of the schematization method in teaching students and pupils in math

DOI: 10.34130/1992-2752_2020_4_74

Text

The publication objective is to highlight and generalize the features of using the schematization method in teaching mathematics as a means of developing thinking and mathematical abilities of learners. The research is based on analyzing scientific and methodical works of Russian and foreign scientists on both activity theory, pedagogy, and author’s researches on applying the schematization method in teaching mathematics. The article proposes a schematic model to teach pupils and students solve mathematical problems. The methodological approaches developed in the research can be used in teaching mathematics at diferent levels of education. We believe that the method described in this paper can be successfully applied in studying natural sciences.

Keywords: a method of schematization; teaching mathematics; stages of mathematical problems solving; schematic model.

References

  1. Robert I. V. Didaktika epokhi tsifrovykh informatsionnykh tekhnologiy (Didactics of the digital information technology era), Professional’noye obrazovaniye. Stolitsa, 2019, no 3, pp. 16-26.
  2. Krutetskiy V. A. Psikhologiya matematicheskikh sposobnostey shkol’- nikov (Psychology of mathematical abilities of schoolchildren), M.: Institut prakticheskoy psikhologii, 1998, 416 p.
  3. Dalinger V. A. Teoreticheskiye osnovy kognitivno-vizual’nogo podkhoda k obucheniyu matematike: monografiya (Theoretical foundations of the cognitive-visual approach to teaching mathematics: monograph), Omsk: Izd-vo OmGPU, 2006, 144 p.
  4. Popov N. I. Metodika obucheniya trigonometrii na osnove kognitivnovizual’nogo podhoda (Methods of teaching trigonometry on the basis of cognitive-visual approach), Sibirskiy pedagogicheskiy zhurnal, 2008, no 11, pp. 34-42.
  5. Christochevskaya A. S., Christochevsky S. A. Kognitivizatsiya – sleduyushchiy etap informatizatsii obrazovaniya (Ñognitivization – the next stage of informatization of education), Informatika i obrazovaniye, 2018, no 9, pp. 5-11.
  6. Tchoshanov M. A. Digital age didactics: from teaching to engineering of learning (Part 1), Informatika i obrazovaniye, 2018, no 9, pp. 53-62.
  7. Khenner E. K. Vychislitel’noye myshleniye (Ñomputational thinking), Obrazovanie i nauka, 2016, no 2, pp. 18-33.
  8. Van Kesteren M. T. R., Rijpkema M., Ruiter D. J., Fernandez G. Consolidation Differentially Modulates Schema Effects on Memory for Items and Associations, PLOS ONE, 2013, Vol. 8, Issue 2.
  9. Dakhin A. N. Kognitivnaya garmoniya matematiki (Cognitive harmony of mathematics), Narodnoye obrazovaniye, no 6-7, 2017, pp. 81-88.
  10. Anderson R. K., Boaler J., Dieckmann J. Achieving Elusive Teacher Change through Challenging Myths about Learning: A Blended Approach, Education Sciences, 2018, Vol. 8, Issue 3: 98.
  11. Popov N. I. Teoretikometodologicheskiye osnovy obucheniya resheniyu tekstovykh algebraicheskikh zadach (Theoretical and methodological foundations of teaching to solve text-based algebraic problems), Obrazovaniye i nauka. Izvestiya Ural’skogo otdeleniya Rossiyskoy
    akademii obrazovaniya, 2009; no 3(60), pp. 88-96.
  12. Popov N. I. Ob efiektivnosti ispol’zovaniya modeli obuchayushchey tekhnologii po trigonometrii pri obuchenii studentov-matematikov
    (Education of students-mathematicians: the effectiveness of implementation of the educational technology when teaching trigonometry),
    Obrazovaniye i nauka, 2013, no 9, pp. 138-153.
  13. Bacabac M. A. A., Lomibao L. S. 4S Learning Cycle on Students’ Mathematics Comprehension, American Journal of Educational Research, 2020, Vol. 8, Issue 3, pp. 182-186.
  14. Burte H., Gardony A. L., Hutton A., Taylor H. A. Think3d!: Improving mathematics learning through embodied spatial training, Cognitive Research: Principles and Implications, 2017, Vol. 2, Issue 1.
  15. Hoogland K., Pepin B., Koning J., Bakker A., Gravemeijer K. Word problems versus image-rich problems: an analysis of effects of task characteristics on students’ performance on contextual
    mathematics problems, Research in Mathematics Education, 2018, Vol. 20, Issue 1, pp. 3752.
  16. Bernikova I. K. Skhemy kak sredstva organizatsii myshleniya v protsesse obucheniya matematike (Schemes as means of organizing thinking in the process of teaching mathematics), Vestnik OmGU, 2015, no 1(75), pp. 2327.
  17. Rahmawati D., Purwantoa, Subanji, Hidayanto E., Anwar R. B. Process of Mathematical Representation Translation from Verbal into Graphic, International Electronic Journal of Mathematics Education, 2017, Vol. 12, Issue 3, pp. 367-381.
  18. Zlotnikov I. V. Psikhologicheskoye i psikho-zicheskoye obespecheniye protsessa obucheniya studentov: metodicheskiye rekomendatsii (Psychological and psychophysical support of the student learning process: guidelines), Riga: Izdatel’stvo RPI, 1988, 36 p.
  19. Poya D. Kak reshat’ zadachu / Pod red. YU. M. Gayduka (How to solve a problem / Ed. Yu. M. Gaiduk), M., 1959, 208 p.
  20. Kolyagin U. M. Zadachi v obuchenii matematike (Problems in teaching mathematics), M: Prosveschenie, 1977, Ch. 1,113 p.
  21. Mordkovich A. G. Besedy s uchitelyami matematiki: ucheb.-metod. Posobiye (Conversations with teachers of mathematics: textbookmethod. allowance), M.: Oniks, 2007, 334 p.
  22. Sarantsev G. I. Uprazhneniya v obuchenii matematike (Exercises in teaching mathematics), M., 2005, 254 p.
  23. Neshkov K. I., Semushin A. D. Funkcii zadach v obuchenii (Task functions in training), Matematika v shkole, 1971. no 3, pp. 4-7.
  24. Popov N. I., Yakovleva E. V. Aktual’nyye problemy obucheniya matematike inostrannykh studentov v vuze (Topical issues of teaching mathematics to international students at a university), Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta, Series: Pedagogika, 2019, no 3, pp. 144-153.
  25. Marasanov A.N. Sistema zadach po trigonometrii v obuchenii matematike uchaschihsya srednih obscheobrazovatelnih uchrejdenii (System of problems in trigonometry in teaching mathematics to students of secondary educational institutions): diss. . . . kand. ped. nauk., Saransk, 2012, 180 p.

For citation: Popov N.I., Yakovleva E.V. Use of the schematization method in teaching students and pupils in math, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 4 (37), pp. 74-87.