Beemnux Colkmaierapckozo yrusepcumema.

Cepusa 1: Mamemamura. Mexanura. Undopmamura. 2022.
Bunyck 1 (42)

Bulletin of Syktyvkar University.

Series 1: Mathematics. Mechanics. Informatics. 2022; 1 (42)

NHOOPMATUKA
Hayunas cratbs

VIIK 539.3
https://doi.org/10.34130/1992-2752 2022 1 61

Development of XML-based Markup Language

Vadim A. Melnikov!, Andrey V. Yermolenko?
L2Pitirim Sorokin Syktyvkar State University, ea74@list.ru

Abstract. Modern approaches in the field of software
development assume not only the functionality of the product being
developed, but also the convenience, clarity and familiarity of the
interfaces. Today, the developed software can be used on various
devices, with different configurations, and users may also need a
different language to work with the software. To address the issue
of universality in the field of 2D games, the approach used in the
development of the user interface for the Sad Lion Engine is proposed.
Within the framework of this approach, it is supposed to use the
markup language Sad Lion Markup Language, the description and
use of which is given in the article.

Keywords: user interfaces, C++-, mobile development, markup
languages

For citation: Melnikov V. A., Yermolenko A. V. Development of
XML-based Markup Language. Bulletin of Syktyvkar University, Series
1: Mathematics. Mechanics. Informatics, 2022, No. 1 (42), pp. 61—-73.
https://doi.org/10.34130/1992-2752 2022 1 61

(© Melnikov V. A., Yermolenko A. V., 2022.

62 Melnikov V. A., Yermolenko A. V.

A3bik pazmerkn SadLion Markup Language

Bagum Angpeesuu MeabHukos', Amnapeii Bacuiabesuu
EpMosenko?

1.2 ChIKTBIBKApCKHil TOCYIAPCTBEHHBIN YHUBEpcuTeT uMeHn IlnTupumMa
CopoxkuHa

Annomauyus. CoBpeMeHHBIE MOJXOIbI B 00JACTH Pa3pabOTKH
nporpammuoro obecnederusi (I10) mpeanonaraloT He TOJBKO (DYHK-
[IMOHAJIBHOCTH pa3pabaThiBaeMOTro MPOIAYKTa, HO U YI00CTBO, ITOHSIT-
HOCTb U UpuUBbIYHOCTH uHTepdeiicoB. Ha ceroapusimuuii genn pas-
pabareiBaemoe 11O MoxKeT HCIIOSIB30BATHCS HA PA3JIUYIHBIX YCTPOIi-
CTBaX, C PA3JIMIHBIMU KOH(MUIYPAIMAME, & TaKXKe I0JIb30BaTe/IsIM
MOXKET OBITH HEOOXOMUM JPYroi si3blK ist paborel ¢ 110. s pe-
IIEHUs BOIIPOCa YHUBepcaabHOCTU B obsractu 2D-urp npejraraercs
ITOJIXO/I, UCIIOJIb30BAHHBIN MpHU Pa3paboTKe MOJIb30BATEIbCKOIO WH-
Tepeiica urpoporo gemxkka Sad Lion Engine. B pamkax gasaOro
MMOJXO/Ia MPEIIIOIAraeTCs MCIIO0Ab30BaTh SI3bIK pasMmeTku Sad Lion
Markup Language, onmcanue u MCIOJIB30BAHUE KOTOPOTO MPUBEIE-
HO B CTaThe.

Karouesnle caosa: monb3oBaresbekuit nunrepdeiic, Cu-++, pas-
paboTKa MOOMJIBHBIX MTPUJIOXKEHUHN, SI3bIKA PA3METKHU

Jas yumuposanus: Melnikov V. A., Yermolenko A. V. Development
of XML-based Markup Language // Becmnukx Cwurxmuwiekapckozo ynueep-
cumema. Cep. 1: Mamemamuxa. Mexanuxa. Ungpopmamura. 2022. Bpi.
1 (42). C. 61—-73. https://doi.org/10.34130/1992-2752 2022 1 61

Introduction

The user interface is just important as a program code. According to the
developers’ estimates, the end user first of all pays attention to the program
interface, and not to its functionality. Therefore, the special attention is
always given to the questions of interface.

After the first version of Unix appeared in 1969, programs were designed
to work in text-based terminals, and a text-based interface was the norm. In
the mid-80s, graphical user interfaces began to appear (hereinafter GUI),
the development of which from the early 70s was carried out by Xerox
Palo Alto Research Center. This research center influenced the development
of the Apple Macintosh interface, and through it, the Microsoft Windows
interfaces [1].

Development of XML-based Markup Language 63

Today it is necessary not only to create a user interface for the program,
but also to design it taking into account internationalization, because most
modern programs are localized into many different languages. And when
developing for mobile devices, it is also necessary to take into account
the existence on the market of devices with different screen ratios, since
in addition to the already familiar 9:16 ratio, which is widespread among
phones, and 3:4, used for tablets, there is also a 9:19.5 ratio for smartphones
Apple iPhone X!,

Various methods of layout development are used to create user interfaces
on mobile devices. One of the easiest ways is to use the built-in browser
engine (usually such a component is called WebView) and write code using
JavaScript and HTML, which allows Apache Cordova |2|. But this approach
will lead to the fact that the application will be initially slow, annoying
users. The second way is to create native Android [3] and iOS [4] apps
using standard layout tools or cross-platform Xamarin [5|. Both ways have
similarities and are all very similar to the older Windows Presentation
Foundation (WPF) technology [6]. At first glance, it may seem that the
technology that will be described below reinvents HTML and JS, but it
should be noted that for using HTML and JS on rather weak (compared
to PCs based on x86 architecture) mobile platforms, it leads to an increase
in power consumption and a decrease in performance applications. Nikolay
Armonik in his report “How we made the biggest game on Defold in 1 year”
at the DevGAMM Moscow 2018 conference gives figures on the performance
of their application: 20-40 % of the frame time is taken by the execution
of Lua scripts, Lua is interpreted language like JavaScript and they are
comparable in performance. Ditcing interpreted languages and writing all
the logic in C +-+ greatly improves application performance.

The native development approach forces developers to maintain several
completely incompatible codebases — one in Java or Kotlin for Android,
and one in Objective-C or Swift for iOS in the case of mobile applications.
If you're developing for Windows, you’ll need to add the UWP. Part of the
problem is solved by using Xamarin Forms [5], which allow you to generalize
most of the code and only in special cases write code using Xamarin Native.

The Flutter [7]| technology stands apart, in which the native elements of
the user interface are not used, but the elements are drawn immediately on

!According to sites: https://deviceatlas.com/blog/most-used-smartphone-screen-
resolutions, https://www.apple.com/ru/newsroom,/2017/09/the-future-is-here-iphone-

x/

64 Melnikov V. A., Yermolenko A. V.

the screen using Skia? — the Google vector graphics library. The approach is
quite similar to designing interfaces in games. Flutter uses the Dart language
for programming, which is focused on Web applications and U, just like
JavaScript. Dart is not as powerful as C++, and in games, performance is
critical.

The given review of the modern approach to the creation of interfaces
shows that the demanded task is to create universal, easily programmable
interfaces that adjust to various devices and screens, with different aspect
ratios. To solve this problem, it is proposed to use the Sad Lion Engine
(SLE) game engine (SLE) [8] user interface, created with the help of
C++, based on the developed markup language for maximum application
performance. Accordingly, the purpose of the article is to describe the
capabilities of the developed interface of the SLE game engine. It should be
noted that there is a powerful framework Qt [9] for developing applications
for PCs and mobile platforms, but it was not initially considered due to the
prohibitive cost for a small development studio.

This approach is applicable both to business applications and to any
games (2D, 3D, AR, VR), since even in 3D games, the interface remains a
2D texture placed in space.

A review of publications in scientific and technical literature proves that,
despite the rapid development of programming languages and environments,
mobile game developers face a fairly large number of various difficulties when
creating game applications and interfaces. For example, general problems of
game design, including the development of mobile applications, are raised in
[10; 11]. Developers are considering different approaches to solving problems
related to interfaces. In [12], the authors present the XVGDL language for
describing games, based on the extensible markup language XML, while
emphasizing the universality of XVGDL, describing the syntax and compo-
nents of XVGDL, and examples of their use. In the study in [13], the authors
present an approach for the automated creation of classic multiplayer 2D
games based on Android, based on the concept of model-based engineering.
The development of lightweight performance game engines also remains
a popular trend. However, this raises questions of their development, the
introduction of new technologies and the functionality provided by modern
and promising devices [14].

Zhttps://skia.org/ — Skia vector graphics library site.

Development of XML-based Markup Language 65

First version of markup language made for Unity3D

The first version of Sad Lion Markup Language (SLML) ran entirely
within Unity3D. The creation of the interface was based on the component
system [10] and a set of components of the Unity3D engine itself. Application
lifecycle was also based on Unity3D [11|. The emergence of SLML in
Unity3D is justified by the complexity of creating a high-quality adaptive
interface using standard engine tools. It is quite difficult to align UI elements
so that they look good on different screen ratios.

The emergence of SLML and SLE began with a solution to the problem
of large executable file sizes. When using sprites, Unity3D embed them in
an unpacked executable file, which led to a large increase in the size of
the application. With further development, it was revealed that adding new
objects also leads to a strong increase in the size of the executable file. To
solve this problem with sprites, a special tool was made for creating atlases
in PNG files. Solving the problem with objects required creating our own
system for creating objects in the scene, bypassing Unity3D, and this was
the reason for the appearance of SLML.

SLML does not create objects in advance, all descriptions are stored in
XML files, objects are set on the fly when the game starts. This approach
made it possible to avoid embedding the code of objects in the binary code,
instead, they are generated according to the description from the XML file
as needed.

In SLE, scaling occurs after all objects are created. In Unity3D, the
game is executed within the Awake-Start-Update cycle, which leads to the
following problem: it is necessary to create objects in the framework, in
which there is no possibility to create before the cycle starts. Also, adjusting
the width-height using anchors in Unity3D is not very convenient.

The difficulties described above indicated the need to develop our own
SLE core.

Implementation within SLE

SLML is based on XML [17]. As part of SLE, the problems related to
the life cycle of an application in Unity3D were solved, the life cycle of
SLE involves the complete creation of a component tree before the first call
to Awake of any of the components specified in the XML file. Using the
Skia library allowed adding a number of new functions to the user interface
system.

66 Melnikov V. A., Yermolenko A. V.

BI5ZOOMA -

Fig. 1. Screen with aspect ratio 9:16

The main idea of SLML is to use an adaptive layout, in which several
(usually three) layouts are initially set up and then the user interface is
interpolated based on one of the existing layouts. If there is a relationship for
which high-quality interpolation does not work, then it can be implemented
separately without affecting the engine itself.

Let’s show the advantages of SLE on the example of the Big Coloring
Book? project, using a form layout made for one and two ratios. In the
current version of SLML, additional layouts are obtained using variables
stored in a JSON file and substituted during parsing of XML files.

Let’s take an aspect ratio close to 9:16 (Xiaomi Redmi 4X) as a basis,
the result is shown in Fig. 1. Fig. 2 shows how the interface will look
in a ratio close to 3: 4 (DEXP E170), obtained by proportionally scaling
the interface created for a ratio of 9:16. Immediately, a strong violation of
proportions is noticeable, the pop-up window is much larger in width than
in height, and the elements also begin to run over each other.

Fig. 3 shows the result obtained using a separate 3:4 ratio. This approach
allowed us to obtain a better result for each aspect ratio, the proportions
of elements and the distances between them are preserved. According to
professional designers, in this case, with the help of optical alignment, the
image becomes visually balanced and harmonious for the user to perceive

3App in the Google Play store — https://play.google.com /store/apps/details?id=
sadlion.games.bigcoloringbook.

Development of XML-based Markup Language 67

Yummy!

One... Two... Three! Grab it!!!
So many dogs for one single
bone... But don't be afraid:

they will not Fight for it. Only

weltrmanneredggood boys

gathered here... Good boys
and girls.

contour | Ffull-size % fauna cute dogs

BY NUMBER FREE MODE

Fig. 2. Screen with aspect ratio 3:4, obtained by scaling from layout with
aspect ratio 9:16

One... Two... Three!
Grab it!!! So many dogs
for one single bone...
But don't be afraid:
they will not fight for it.
Only well-mannered
ﬁood boys gathered

ere... Good boys and
girls.

Qs

contour full-size

BY NUMBER FREE MODE

Fig. 3. Screen with aspect ratio 3:4

at an intuitive level. The block with the text has enough free space around
it and is related from the point of view of visual ergonomics. If the ratio
of the sides is not from the list of those implemented in advance, then
proportional scaling from the closest ratio will occur. This allows you to
take into account the specifics of the screen ratio, large width and vice
versa, height, and position the interface elements more accurately.

68

Melnikov V. A., Yermolenko A. V.

Within the SLM, there are several main tags that provide basic functio-
nality:

Form is the root tag for layout file;

Row is a tag of row which takes all width and given height of parent,
rows are placed one after another;

Col is a tag of column which takes the given width and all height of
parent, columns are placed one after another;

Layer is a tag of layer, which takes all space of parent and placed in
point (0, 0) regarding the parent, layers overlap each other;

Button is a tag of button, which gives opportunity to handle user
gestures like taps and moves of finger;

Image is a raster sprite;

Text is a one-line text;

Let’s now look at the most important attributes for tags:

width — in the case of the Form tag, it can only have an absolute value
in pixels, it sets the screen width, in the case of the rest Col can be
expressed as a percentage and sets the column width, in other cases
it is ignored;

height — in the case of the Form tag, it can only have an absolute value
in pixels, sets the screen height, in the case of the rest, Row can be
expressed as a percentage and sets the row height, in other cases it is
ignored;

name — sets the string name of the object, by which it can be found
from C++ code;

aspectRatioFitter — the way to control aspect ratio of object, now only
FitInParent is supported;

components — attribute, which contains names of components, which
must be connected to the object, in C# version this was made with
the reflection, in C-++ this is done by register of object instantiators;

Development of XML-based Markup Language 69

e text — string attribute which sets the value to tag Text;

e group onUp, onDown, onClick — attributes of button events, which
store names of events handlers. This functionality is realized with the
register of event handlers in each form;

e sprite — string constants in format “atlas/index”, where atlas is name
of the atlas and index is number of the sprite in the atlas.

This is a list of the main attributes, the rest of the attributes only provide
visual effects such as gradients, frames, etc. They are of interest only for
documentation purposes. Below is an example source code snippet for the
Big Coloring Book project:

<Row height="24.5">
<Col color="255/0/255/0">
<Text name="txtMyWorks"
font-size="28"
font="Ubuntu-Bold"
color="+/lightBlue"/>
</Col>
</Row>

Conclusion

After switching from Unity3D to Xamarin C# [8|, the functionality
of the engine and SLML was increased, the lifecycle was adapted to the
requirements of SLE and SLML, and the loading speed of applications
increased greatly.

After switching to C++-, performance has increased significantly, but the
flexibility and ease of C# development has been lost. In C++, there is no
reflection and all components and handlers have to be registered manually,
and the Android Studio IDE also leaves much to be desired in terms of
performance compared to Visual Studio from Microsoft: it takes a long
time to compile, the debugger is unstable (while working with a smartphone
xiaomi redmi 4, the debugger is disabled at the point stops), slow hints on
possible function names (and with an application size of 20 thousand lines,
it is impossible to keep everything in memory), but Xamarin C# did not
have sufficient stability.

The SLML language is in constant development and continues to change
along with SLE, from the last changes we note the functions concerning the

70 Melnikov V. A., Yermolenko A. V.

positioning of objects and the displacement of adjacent ones when the height
of one of the objects changes.

CIINCOK MCTOYHUKOB

1. Rago A. S., Stevens W. R. Advanced programming in the UNIX
environment. Addison-Wesley Professional, 2013. 1032 p.

2. Camden K. R. Apache Cordova In Action. Shelter Island: Manning, 2016.
230 p.

3. Thornsby J. Android UI design. Birmingham: Packt Publishing, 2016. 356
p.

4. Bennett G., Kaczmarek S., Lees B. Swidt 4 for Absolute Beginners.
Phoenix: Apress, 2018. 317 p.

5. Petzold C. Cross-platform C# programming for iOS, Android and Windows.
Redmond, Washington: Microsoft Press, 2013. 1161 p.

6. Petzold C. Applications = Code + Markup. A Guide To the Microsoft
Windows Presentation Foundation. Redmond: Microsoft Press, 2006. 1002 p.

7. Windmill E. Flutter in Action. Shelter Island: Manning, 2020. 368 p.

8. MeabuukoB B.A. Ilporecc pazpaborku mBmxkka st 2D-urp u maTepdeii-
co Sad Lion Engine // Becmuur Coxmuexapcrozo ynusepcumema. Cep.1:
Mamemamura. Mexanuxa. Hngopmamura, 2019. Bemr. 4 (33). C. 21-37.

9. Dogsa T., Meolic R. A C++ App for Demonstration of Sorting
Algorithms on Mobile Platforms // International Journal of Interactive
Mobile Technologies, 2014 Vol. 8, No 1. URL: https://www.online-
journals.org/index.php/i-jim/article/view /3464/2940 (mara obpamienusi:
17.07.2020).

10. Cao J., Cao Y. Application of human computer interaction interface in game
design // Communications in Computer and Information Science, 2017, 714,
pp. 103-108. DOI: 10.1007/978-3-319-58753-0 _16.

11. Zaina L. A. M., Fortes R. P. M., Casadei V., Nozaki L. S., Paiva D.
M. B. Preventing accessibility barriers: Guidelines for using user interface

design patterns in mobile applications // Journal of Systems and Software,
2022, vol. 186. DOI: 10.1016/j.jss.2021.111213.

Development of XML-based Markup Language 71

12.

13.

14.

15.

16.

17.

Quinones, J. R., Fernandez-Leiva, A. J. XML-Based Video Game
Description Language // IEEE Access, 2020, vol. 8, pp. 4679-4692. DOI:
10.1109/ACCESS.2019.2962969.

Derakhshandi M., Kolahdouz-Rahimi S., Troya J., Lano K. A
model-driven framework for developing android-based classic multiplayer
2D board games // Automated Software Engineering, 2021, 28 (2). DOI:
10.1007/s10515-021-00282-1.

Park, H. C., Baek, N. Design of SelfEngine: A Lightweight Game Engine //
Lecture Notes in Electrical Engineering, 2020, vol. 621, pp. 223-227. DOIL:
10.1007/978-981-15-1465-4 23.

West M. Evolve your hierarchy |Online| // Cowboy Programming. URL:
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/ (mara
obparenus:: 22.08.2020).

Hocking J. Unity in action: Multiplatform game development in C#.
Manning, 2018. 400 p.

Lisovsky, K.Y. XML Applications Development in Scheme //
Programming and Computer Software 28, pp. 197-206 (2002).
https://doi.org/10.1023/A:1016319000374

References

1.

Rago A. S., Stevens W. R. Advanced programming in the UNIX
environment. Addison-Wesley Professional, 2013. 1032 p.

Camden K. R. Apache Cordova In Action. Shelter Island: Manning, 2016.
230 p.

. Thornsby J. Android Ul design. Birmingham: Packt Publishing, 2016. 356

p.

. Bennett G., Kaczmarek S., Lees B. Swidt 4 for Absolute Beginners.

Phoenix: Apress, 2018. 317 p.

. Petzold C. Cross-platform C# programming for 108, Android and Windows.

Redmond, Washington: Microsoft Press, 2013. 1161 p.

. Petzold C. Applications = Code + Markup. A Guide To the Microsoft

Windows Presentation Foundation. Redmond: Microsoft Press, 2006. 1002 p.

Windmill E. Flutter in Action. Shelter Island: Manning, 2020. 368 p.

72

Ne)

10.

11.

12.

13.

14.

15.

16.

17.

Melnikov V. A., Yermolenko A. V.

Melnikov V. A. Development Process of game engine core for 2D games
and interfaces Sad Lion Engine. Vestnik Syktyvkarskogo universiteta. Ser.1:
Matematika. Mexanika. Informatika |Bulletin of Syktyvkar University. Series
1: Mathematics. Mechanics. Informatics|, 2019, 4 (33), pp. 21-37. (In Russ.)

Dogsa T., Meolic R. A C++ App for Demonstration of Sorting
Algorithms on Mobile Platforms. International Journal of Interactive
Mobile Technologies., 2014. Vol. 8, No 1. Available: https://www.online-
journals.org/index.php/i-jim/article/view/3464,/2940 (accessed: 17.07.2020).

Cao J., Cao Y. Application of human computer interaction interface in
game design. Communications in Computer and Information Science, 2017,
714, pp. 103-108. DOI: 10.1007,/978-3-319-58753-0 _16.

Zaina L. A. M., Fortes R. P. M., Casadei V., Nozaki L. S., Paiva
D. M. B. Preventing accessibility barriers: Guidelines for using user interface
design patterns in mobile applications. Journal of Systems and Software, 2022,
vol. 186. DOI: 10.1016/j.jss.2021.111213.

Quinones, J. R., Fernandez-Leiva, A. J. XML-Based Video Game
Description Language. IEEE Access, 2020, vol. 8, pp. 4679-4692. DOI:
10.1109/ACCESS.2019.2962969.

Derakhshandi M., Kolahdouz-Rahimi S., Troya J., Lano K. A model-
driven framework for developing android-based classic multiplayer 2D board
games. Automated Software Engineering, 2021, 28 (2). DOI: 10.1007/s10515-
021-00282-1.

Park, H. C., Baek, N. Design of SelfEngine: A Lightweight Game Engine.
Lecture Notes in Electrical Engineering, 2020, vol. 621, pp. 223-227. DOI:
10.1007/978-981-15-1465-4 23.

West M. Evolve your hierarchy [Online] Cowboy Programming. Available:
http://cowboyprogramming.com /2007 /01 /05 /evolve-your-heirachy /
(accessed: 22.08.2020).

Hocking J. Unity in action: Multiplatform game development in C#.
Manning, 2018. 400 p.

Lisovsky, K.Y. XML Applications Development in Scheme.
Programming and Computer Software 28, 197206 (2002).
https://doi.org/10.1023/A:1016319000374

Development of XML-based Markup Language 73

Caenennst 06 aBropax / Information about authors

Bagum Anjpeesna Mesnsaukos / Vadim A. Melnikov

acrimpanT / postgraduate student

CBIKTBIBKApCKUil rocyaapcTBeHHblil yauBepcuTer M. [Iutupuma Copoku-
Ha / Pitirim Sorokin Syktyvkar State University

167001, Poccust, r. CoikrbiBkap, Okrsabpbekuit mp., 55 / 167001, Russia,
Syktyvkar, Oktyabrsky Ave., 55

Anppeit Bacunbesuu Epmosienko / Andrey V. Yermolenko

K.(.-M.H., JIOIEHT, 3aBe/ Iy IOl Kade1poit TPUK/IaHoi MaTeMATUKNA U KOM-
nbtorepHbix HayK / Ph.D. in Physics and Mathematics, Associate Professor,
Head of Department of Applied Mathematics and Computer Science
CBIKTBIBKApCKUil TocyaapcTBeHHblil yauBepcurer uM. [Iutupuma Copoku-
na / Pitirim Sorokin Syktyvkar State University

167001, Poccust, r. CoikrbiBkap, Okrsabpbekuit mp., 55 / 167001, Russia,
Syktyvkar, Oktyabrsky Ave., 55

Crarbs mocrynuia B pegakiuio / The article was submitted 12.03.2022
Om06peno nocsie penensuposanusi / Approved after reviewing 24.03.2022
[Tpunsro k mybaukaruu / Accepted for publication 25.03.2022

