Вестник 1 (19) 2014

Выпуск 1 (19) 2014

I. Вечтомов Е. М., Лубягина Е.Н. О полукольцах частичных функций

Текст статьи

Начато изучение полуколец частичных функций и непрерывных частичных функций со значениями в произвольном полукольце S. Показано, что полукольца частичных S-значных функций изоморфны соответствующим полукольцам всюду определенных функций. Доказано, что любое Т1-пространство X определяется полукольцом C P(X,S) всех непрерывных частичных функций на X со значениями в неодноэлементномтопологическом полукольце с замкнутой единицей. Описаны максимальные идеалы полуколец СР(Х, S).

Ключевые слова: полукольцо, топологическое пространство, полукольцо частичных функций.

Список литературы

  1. Вечтомов Е. М. Вопросы определяемости топологических пространств алгебраическими системами непрерывных функций / /Итоги науки и техники. ВИНИТИ. Алгебра. Геометрия. Топология. 1990. Т. 28. С. 3-46.
  2. Вечтомов Е.М. Определяемость топологических пространств полугруппами непрерывных частичных функций / / Киров, 1987. Деп.ВИНИТИ № 256-В88. 21 с.
  3. Вечтомов Е. М. О полугруппах непрерывных частичных функций на топологических пространствах / / УМН. 1990. Т. 46. Вып. 4-с. 143-144.
  4. Вечтомов Е. М., Лубягина Е. Н. Полукольца непрерывных[0, 1] -значных функций / / Фундаментальная и прикладная математика. 2012. Т. 17. Вып. 1. С. 53-82.
  5. Вечтомов Е. М ., Сидоров В. В., Чупраков Д . В. Полукольца непрерывных функций. Киров: Изд-во ВятГГУ, 2011. 312 с.
  6. Вечтомов Е. М ., Чупраков Д . В. Полукольца непрерывных функций со значениями в Т0-полукольцах / / Тенденции и перспективы развития математического образования: материалы XXXIII Междунар. науч. семинара преподавателей математики информатики ун-тов и пед. вузов, посвященного 100-летиюВятГГУ, 25-27 сент. 2014 г. Киров: Изд-во ВятГГУ, 2014 С. 145-147.
  7. Вечтомов Е. М ., Шалагинова Н. В. Простые идеалы в частичных полукольцах непрерывных [0,∞]-значных функций / / ВестникПермского университета. Сер.: Математика. Механика. Информатика. 2014- Вып. 1 (24). С. 5-12.

II. Пименов Р. Р. О курсе «эстетическая геометрия» и роли симметрии относительно окружности в обучении математике

Текст статьи

Предлагается метод обучения ключевым математическим концепциям посредством построения эстетических образов. Метод базируется на симметрии между окружностями (инверсии). Концепция симметрии между окружностями может быть сквозным элементом математического образования. Это упростит усвоение теории групп, неевклидовых геометрий, понятия предела и многих других понятий высшей математики.

Ключевые слова: геометрия, эстетика, симметрия, инверсия, теория групп, реформа образования.

Список литературы

  1. Пименов Р. Р. Эстетическая геометрия или теория симметрий.СПб.: Школьная лига, 2014. 288 с.
  2. Бахман Ф. Построение геометрии на основе понятия симметрии /пер. снем. Р.И. Пименова; под ред. И.М. Яглома. М.: Наука,1969. 380 с.
  3. Пименов Р. Р. В мире поломанных линеек / / Компьютерные инструменты в школе. № 5. 2011. С. 66-72.
  4. Коксетер Г. С. М., Грейтцер С. П. Новые встречи с геометрией. М.:    Наука, 1978. 225 с.

III. Ермоленко А. В. Уточненные соотношения теории пластин, ориентированные на решение контактных задач

Текст статьи

При решении контактных задач со свободной границей по классической теории на границе зоны контакта возникают сосредоточенные усилия. При рассмотрении этих же задач с использованием уточненной теории пластин типа Кармана -Тимошенко — Нагди контактные реакции выражаются квадратично суммируемыми функциями.

Для упрощения формулировки условий сопряжения взаимодействующих элементов предлагается использовать вариант уточненной теории пластин, разрешающие уравнения которой могут быть приведены к произвольной поверхности.

Ключевые слова: уточненная теория пластин, контактная задача

Список литературы

  1. Ермоленко А. В. Теория плоских пластин типа Кармана-Тимошенко Нагди относительно произвольной базовой плоскости // В мире научных открытий. Красноярск: НИЦ, 2011. №8.1(20). С. 336-347
  2. Михайловский Е. И., Бадокин К . В., Ермоленко А. В. Теория изгиба пластин типа Кармана без гипотез Кирхгофа // Вестник Сыктывкарского университета. Серия 1. Мат. Мех. Инф.1999. Вып. 3. С. 181-202.
  3. Михайловский Е. И., Ермоленко А. В. Полудеформационный вариант граничных условий в нелинейной теории пологих оболочек // Нелинейные проблемы механики и физики деформируемого твердого тела: Тр. научн. школы акад. В.В. Новожилова. СПб.: СПбГУ, 2000. Вып. 3. С. 60-76.
  4. Михайловский Е. И., Ермоленко А. В. Уточнение нелинейной квазикирхгофовской теории оболочек К.Ф. Черныха // Вестник Сыктывкарского университета. Серия 1. Мат. Мех. Инф. 1999.Вып. 3. С. 203-222.
  5. Михайловский Е. И., Тарасов В. Н. О сходимости метода обобщенной реакции в контактных задачах со свободной границей //РАН. ПММ. 1993. Т. 57. Вып. 1. С. 128-136.
  6. Михайловский Е. И., Торопов А. В. Математические модели теории упругости. Сыктывкар: Сыктывкарский университет, 1995.251 с.
  7. Черных К. Ф. Нелинейная теория упругости в машиностроительных расчетах. JL: Машиностроение, 1986. 336 с.

IV. Котелина Н. О.  Построение окружности при помощи nurbs-кривых

Текст статьи

В статье рассматриваются NURBS-кривые и их свойства, в частности исследуется вопрос о связи NURBS-кривых с дробно-рациональными кривыми Безье. Для заданного набора весов и узлов приводится подробное доказательство известного утверждения, что NURBS-кривая на этом наборе представляет собой окружность.

Ключевые слова: NURBS, рациональная кривая Безье, В-сплайн, полином Бернштейна.

Список литературы

  1. Хилл Ф. OpenGL. Программирование компьютерной графики. Для профессионалов. СПб.: Питер, 2002. 1088 с.
  2. Piegl L., Tiller W. The NURBS book. 2nd Edition. New York: Springer-Verlag, 1995-1997. 327 c.
  3. Григорьев М. И., Малозёмов В. H., Сергеев А. Н. Можно ли построить окружность с помощью кривых Безье? / / Семинар «DHA & CAGD». Избранные доклады. 19 декабря 2006 г.(http://dha.spb.ru/reps06.shtml#1219).
  4. Голованов Н. Н. Геометрическое моделирование. М.: Изд-вофизико-математической литературы, 2002. 472 с.

V. Котелина Н. О., Певный А. В. Неравенство сиядельникова и полиномы гегенбауэра

Текст статьи

Даётся новое доказательство неравенства Сидельникова, основанное на свойствах полиномов Гегенбауэра. Неравенство обращается в равенство на сферических полудизайнах и только на них.Ключевые слова: неравенство Сидельникова, полиномы Гегенбауэра.

Список литературы

  1. Сидельников В. М. Новые оценки для плотнейшей упаковкишаров в n-мерном эвклидовом пространстве / / Матем. сб. 1974 Т. 95 № 1(9). С. 148-158.
  2. Котелина Н. О., Певный А. Б. Неравенство Сидельникова / / Алгебра и анализ. 2014. Т. 26. № 2. С. 45-52.
  3. Котелина Н. О., Певный А. Б. Экстремальные свойства сферическихполудизайнов / / Алгебра и анализ. 2010. Т. 22. № 5.С. 162-170
  4. Goethals J. М., Seidel J. J. Spherical designs / / Proc. Symp. PureMath. A.M.S. 1979. V. 34. P. 255-272.
  5. Venkov В. B. Reseauxet designs spheriques / / Reseaux Euclidiens, Designs sphiriques et Formes Modulaires, L’Enseignement mathimatique Monograph, Geneve. 2001. №. 37. P. 10-86.
  6. Котелина H. О. Формула сложения для полиномов Гегенбауэра // Семинар «DHA & CAGD». Избранные доклады. 13 ноября2010 г. ( http://dha.spb.ru/repslO.shtml#1113).
  7. Андреев Н. Н. Минимальный дизайн 11-го порядка на трёхмерной сфере / / Математические заметки. 2000. Т. 67. № 4.С. 489-497.

VI. Шилов С. В. Факторы поражения при разгерметизации газовых магистралей

Текст статьи

В работе проведен сравнительный анализ нескольких методик и предложена модель расчета факторов поражения при взрыве облака метана. Модель взрыва позволяет учесть характер застройки местности и определить возможные зоны поражения около газопровода.

Ключевые слова: газовая магистраль, взрыв, поражающие факторы, ударная волна, импульс волны, зона поражения.

Список литературы

  1. Вяхирев Д. А., Шушунова А. Ф. Руководство по газовой хроматографии. М.: Высшая школа, 1975. 302 с.
  2. Вяхирев Р. И., Макаров А. А. Стратегия развития газовойпромышленности России. М.: Энергоатомиздат, 1997. 344 с.
  3. Обеспечение мероприятий и действий сил ликвидации ЧС: учебник / под ред. С. К. Шойгу Калуга: ГУП «Облиздат», 1998. Ч. 2.Кн. 2. 176 с.
  4. Пирогов С. Ю., Акулов JI. А., Ведерников М. В., Кириллов Н. Г. и др. Природный газ. СПб.: НПО «Профессионал»,2006. 848 с.
  5. РД 03-409-01. Методика оценки последствий аварийных взрывовтопливно-воздушных смесей.
  6. Ситтинг М. Процессы окисления углеводородного сырья. М.: Химия, 1970. 300 с.
  7. СНиП 42-01-2002. Газораспределительные системы.
  8. СП12.13130.2009. Определение категорий помещений, зданий и наружних установок по взрывопожарной и пожарной опасности.
  9. Храмов Г. Н. Горение и взрыв. СПб.: СПбГПУ, 2007. 278 с.

VII. Миронов В. В., Мартынов В. А. Параллельные алгоритмы сортировки данных с использованием технологии mpi

Текст статьи

В работе решается задача оптимизации стандартных сортировок с помощью технологии MPI. Используется модель приема-передачи сообщений, являющаяся одной из самых популярных моделей программирования в MPI. Для проведения численных экспериментов написано приложение на языке программирования C++. В работе приведены результаты численного

моделирования сортировки данных в параллельном режиме.

Ключевые слова: параллельные алгоритмы, сортировка, эффективность.

Список литературы

  1. Кнут Д. Э. Искусство программирования. Т. 3. Сортировка и поиск.М.: Вильямс, 2007. 800 с.
  2. Воеводин В. В., Воеводин В. В. Параллельные вычисления.СПб.: БХВ-Петербург, 2002. 602 с.
  3. Антонов А. С. Параллельное программирование с использованием технологии MPI. М.: Изд-во МГУ, 2004 . 71 с.
  4. Хьюз К., Хьюз Т. Параллельное и распределенное программирование с использованием C++. М.: Вильямс, 2004. 345 с.

VIII. Никитенков В. Л., Ануфриев А. Е. Фильтрация данных, полученных трёхмерной реконструкцией по ряду изображений

Текст статьи

В данной статье описаны методы фильтрации данных, полученных трёхмерной реконструкцией по ряду изображений. При получении трёхмерных точек по ряду изображений, часто вместе с точками интересующего нас объекта попадают точки фона и точки, которые были ошибочно распознаны как похожие (например, точки неба за объектом), поэтому необходимо делать фильтрацию точек фона и объекта до самой трёхмерной реконструкции. Кроме удаления лишних данных для обработки, удаление точек фона до этапа реконструкции приводит к тому, что в алгоритм вычисления трёхмерных точек и параметров камеры не попадают точки с большим соотношением cm/pix, что приводит к более быстрой сходимости и лучшему решению систем уравнений, описывающих положения камер

Ключевые слова: фильтрация трёхмерных точек, вычисление точек фона.

Список литературы

  1. EnginTola, Vincent Lepetit, PascalFua. A Fast Local Descriptorfor Dense Matching / / Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference, 23-28 June 2008. Pp 1-8. DOI:10.1109/CVPR.2008.4587673.
  2. Charles Loop, Zhengyou Zhang. Computing Rectifying Homographies for Stereo Vision. / / Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Vol.l, pages 125—131, June23-25, 1999. Fort Collins, Colorado, USA.
  3. Christopher M . Bishop. Pattern Recognition and Machine Learning.Springer, 2006. 738 p.
  4. John Canny, A Computational Approach to Edge Detection.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE, VOL. PAMI-8, NO. 6, NOVEMBER 1986. Pp. 679-698.
  5. Martin A. Fischler, Robert C. Bolles. Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysisand Automated Cartography / / Comm. Of the ACM 24: 381—395.DOI: 10.1145/358669.358692
  6. Richard Hartley, Andrew Zisserman. Multiple View Geometry inComputer Vision. Cambridge: University Press, 2003. 655 p.
  7. Richard Szeliski. Computer Vision: Algorithms and Applications.Springer, 2011. 812 p.

IX. Никитенков В. Л., Певный А. Б. Воспоминания о в. ф. демьянове

Текст статьи

Вестник 1 (20) 2015

Выпуск 1 (20) 2015

I. Грытчук A. Достаточные и необходимые условия для решения гипотезы Била

Текст статьи

В 1993 году Эндрю ”Энди“ Бил (Andrew ”Andy“ Beal) высказал гипотезу: Если (∗) ax + by = cz, где a, b, c, x, y, z — положительные целые числа и x, y, z строго больше 2, то a, b и c должны иметь общий простой делитель. В работе получено необходимое и достаточное условие решение уравнения (∗) в положительных целых числах a, b, c, x, y, z, таких, что x > 2, y > 2, z > 2 и числа a, b, c попарно взаимно просты иby>ax.

Ключевые слова: гипотеза Била, диофантовы уравнения, простой делитель.

Список литературы

  1. Redmond D. Number Theory, Mercel Dekker, Inc. New York. Basel.Hong–Kong, 1996.
  2. Sierpinski W. Elementary Number Theory, PWN Warszawa, 1987.

II. Бестужев А. С., Вечтомов Е. М. Циклические полукольца с коммутативным сложением

Текст статьи

В статье рассматриваются полукольца с циклическим умножением -полукольца, в которых каждый элемент, возможно, кроме нуля, является целой неотрицательной степенью образующего элемента. Вначале рассматриваются частные случаи таких полуколец, когда нуль или единица будет натуральной степенью образующего элемента. Затем выясняется, как устроены циклические полукольца в общем случае, и среди таких объектов изучаются полукольца с неидемпотентным сложением.

Ключевые слова: полукольцо, циклическое полукольцо, образующий элемент, поглощающий элемент, циклическая полугруппа, неидемпотентное сложение.

Список литературы

  1. BestugevA. S., VechtomovE. M. Mulitiplicati velycyclic semirings // XIII Международная научная конференция им. академика М. Кравчука. Киев: Национальный технический университет Украины, 2010. Т. 2. С. 39.
  2. Golan J. S. Semirings and their applications. Dordrecht: Kluwer Academie Publishers. 1999. 381 p.
  3. Бестужев А. С. Конечные идемпотентные циклические полукольца //Математический вестник педвузов и университетов Волго–Вятского региона. 2011. Вып. 13. С. 71–78.
  4. Бестужев А. С. О строении конечных мультипликативно–циклических полуколец // Ярославский педагогический вестник.2013. Т. III. № 2. С. 14–18.
  5. Бестужев А. С., Вечтомов Е. М., Лубягина И. В. Полукольцас циклическим умножением // Алгебра и математическая логика: Международная конференция посвященная 100-летию В. В. Морозова. Казань: КФУ, 2011. С. 51–52.
  6. Вечтомов Е. М. Введение в полукольца : пособие для студентов иаспирантов. Киров: Изд-во Вятского гос. пед. ун-та, 2000. 44 с.
  7. Вечтомов Е. М., Лубягина И. В. Циклические полукольца сидемпотентным некоммутативным сложением // Фундаментальнаяи прикладная математика. 2012. Т. 17. Вып. 1. С. 33—52.

III. Калинин С. И. Уточнения неравенства ки фана методом несобственного интеграла

Текст статьи

Ключевые слова: неравенство Ки Фана, метод несобственного интеграла.

Список литературы

  1. Калинин С. И. Средние величины степенного типа. НеравенстваКоши и Ки Фана : учебное пособие по спецкурсу. Киров: Изд-воВГГУ, 2002. 368 с
  2. Калинин С. И., Шалыгина М. Ю. Несобственный интеграл помогает уточнить весовые неравенства Коши и Ки Фана // Информатика. Математика. Язык : науч. журнал. Киров: Изд-во ВятГГУ,2013. Вып. 7. С. 70–72.

IV. Пименов Р. Р. Аналог производной в теории чисел и применение его для доказательства частных случаев теоремы дирихле

Текст статьи

В статье изучаются числа вида (xp − 1)/(x − 1) и находятся свойства их простых делителей. Это позволяет доказать частный случай теоремы Дирихле о бесконечности простых чисел в арифметической последовательности. Все рассмотрение основано на вводимом понятии «p-дифференцируемости» целочисленной функции и использует малую теорему Ферма.

Ключевые слова: теория чисел, малая теорема Ферма, теорема

Дирихле.

Список литературы

  1. Бухштаб A. A. Теория чисел. М.: Просвещение, 1966. 384 с.
  2. Пименов Р. Р. О нестандартном применении методов математического анализа к теории чисел // Математический вестник педвузов и университетов Волго-Вятского региона : периодический межвузовский сборник научно-методических работ. Киров: Научн. изд-во ВятГУ, 2016. Вып. 18. С. 198–201.

V. Попов В. А. О дифференциальных теоремах о среднем для функций комплексного переменного

Текст статьи

Обоснована невозможность вывода аналогов дифференциальных теорем Ролля, Лагранжа и Коши о средних на определенных классах аналитических функций, если даже дифференциальная средняя величина (точка C) ищется на более широком множестве, чем отрезок. Выделен класс полно дифференцируемых функций, для которых точка из равенства Лагранжа принадлежит некоторому кругу, содержащему первоначально заданные точки. Дано простое доказательство неравенства Лагранжа о среднем и традиционного критерия стационарности функции комплексного переменного на области.

Ключевые слова: формула Лагранжа конечных приращений, условие существования укороченной согласованной хорды, полная

производная функции в точке, неравенство Лагранжа о среднем.

Список литературы

  1. Popov V. А. П-derivative and analytical functions // Mathematic sand Science Education in the North-East of Europe: History,Traditions Contemporary Issues. Proceedings of the Sixth Inter Karelian Conferen ce Sortavala, Russia. 11–14 September, 2003.Pp. 59–62.
  2. Боярчук А. К. Справочное пособие по высшей математике. Т. 4:Функции комплексного переменного: теория и практика. М.: Едиториал УРСС, 2001. 352 с.
  3. Ловягин Ю. Н., Праздникова Е. В. Элементарные функциина множестве комплексных гиперрациональных чисел // Вестник Сыктывкарского университета. Сер. 1. Вып. 9. 2009. С. 30–42.
  4. Пименов Р. Р. О нестандартном применении методов математического анализа к теории чисел // Математический вестник педвузов и университетов Волго-Вятского региона : периодический межвузовский сборник научно-методических работ. Киров: Науч.изд-во ВятГУ, 2016. Вып. 18. С. 198–201.
  5. Полиа Г., Сеге Г. Задачи и теоремы из анализа. Часть вторая:Теория функций (специальная часть). Распределение нулей. Полиномы. Определители. Теория чисел. М.: Наука, 1978. 432 с.
  6. Попов В. А. Новые основы дифференциального исчисления : учебное пособие для спецкурсов. Сыктывкар: Изд-во КГПИ, 2002. 64 с.
  7. Попов В. А. Изложение ТФКП на основе понятия полной производной // Проблемы теории и практики обучения математике : cб.науч. работ, представленных на Международную науч. конф. <58Герценовские чтения>. СПб.: Изд-во РГПУ им. А. И. Герцена, 2005.С. 270–276.
  8. Попов В. А. Преднепрерывность. Производные. П-аналитичность.Сыктывкар: Коми пединститут, 2011. 228 с.
  9. Праздникова Е. В. Моделирование вещественного анализа в рамках аксиоматики для гипернатуральных чисел // Вестник Сыктывкарского университета. Сер. 1. Вып. 7. 2007. С. 41–66.
  10. Рудин У. Основы математического анализа. М.: Мир, 1976. 320 с.

VI. Асадуллин Ф. Ф., Котов Л. Н., Устюгов В. А. Устройство поточного шифрования на основе плис

Текст статьи

В статье описана математическая модель ферромагнитных гранулированных пленок, позволяющая рассчитать поля размагничивания и частоты ферромагнитного резонанса (ФМР). Пленки представляются как ансамбли частиц эллипсоидальной формы. Описаны возможные варианты ориентации частиц относительно внешнего подмагничивающего поля, для приведенных

случаев рассчитаны частоты ФМР.

Ключевые слова: тонкие композитные пленки, ферромагнетизм, размагничивающее поле.

Список литературы

  1. Dubowik J. Shape anisotropy of magnetic heterostructures // Phys.Rev. B. 1996. Vol. 54, no. 2. Pp. 1088–1091.
  2. Ishii Y., Okamoto T., Nishina H. Particle length and orientationdi stributions in magnetic recording media // JMMM. 1991. Vol. 98. Pp.210–214.
  3. Мейлихов Е. З., Фарзетдинова Р. М. Ультратонкие плёнкиCo/Cu(110) как решётки ферромагнитных гранул с дипольным взаимодействием // Письма в ЖЭТФ. 2002. Т. 75. №3. С. 170–174.

VII. Мужикова А. В.  Интерактивное обучение математике в вузе

Текст статьи

В работе раскрываются сущность, задачи и принципы интерактивных форм обучения, а также сущность, принципы и методы коллективных учебных занятий как одного из способов проведения учебных занятий в вузе в интерактивной форме. Существующие способы организации и методики коллективных учебных занятий адаптированы и уточнены с целью использования их при обучении математике в техническом вузе.Ключевые слова: интерактивные формы обучения, коллективные

учебные занятия, высшая математика.

Список литературы

  1. Белозерцев Е. П., Гонеев А. Д., Пашков А. Г. и др. Педагогика профессионального образования : учебное пособие / под ред.В. А. Сластенина. М.: Академия, 2004. 368 с.
  2. Гузеев В. В. Методы и организационные формы обучения. М. :Народное образование. 2001. С. 54–55.
  3. Лебединцев В. Б. Модифицированные программы для разновозрастных коллективов на ступени основного общего образования. Биология. Химия. География: методическое пособие. Красноярск,2009. 84 с.
  4. Лебединцев В. Б., Горленко Н. М. Позиции педагогов при обучении по индивидуальным образовательным программам // Народное образование. 2011. №9. С. 224–231.
  5. Лебединцев В. Б., Горленко Н. М., Запятая О. В., Клепец Г. В. Новые модели обучения в малочисленных сельских школах: институциональные системы обучения на основе индивидуальных учебных маршрутов и индивидуальных образовательных программ учащихся : методическое пособие / под ред. В. Б. Лебединцева. Красноярск, 2010. 152 с.
  6. Литвинская И. Г. Коллективные учебные занятия: принципы, фазы, технология // Экспресс-опыт: приложение к журналу «Директор школы». 2000. №1. С. 21–26.
  7. Мкртчян М. А. Методики коллективных учебных занятий //Справочник заместителя директора школы. 2010. №12. С. 50–63.
  8. Мкртчян М. А. Концепция коллективных учебных занятий //Школьные технологии. 2011. №2. С. 65–72.
  9. Сорокопуд Ю. В. Педагогика высшей школы : учебное пособие.Ростов н/Д: Феникс, 2011. 541 с
  10. Шамова Т. И., Давыденко Т. М., Шибанова Г. Н. Управление образовательными системами : учебное пособие. М.: Издательский центр «Академия», 2002. 384 с.

VIII. Ермоленко А. В., Гинтнер А. Н. Влияние поперечных сдвигов на понижение напряженного состояния пластины

Текст статьи

В теории пластин типа Кармана – Тимошенко –Нагди, учитывающей трансверсальные деформации, моменты состоят из двух составляющих — моменты от кривизны срединной поверхности и моменты от изменения поперечных сдвигов. Показано, что при контактном взаимодействии пластины с абсолютно жестким основанием графики составляющих моментов в области максимальных значений находятся в противофазе, что приводит к снижению максимальных значений совокупного момента.

Ключевые слова: уточненная теория пластин, контактная задача, противофаза.

Список литературы

  1. Ермоленко А.В. О контактном взаимодействии цилиндрически изгибаемой пластины с абсолютно жестким основанием //Нелинейные проблемы механики и физики деформируемого тела :тр. научной школы акад. В.В.Новожилова. СПб.: СПбГУ, 2000.Вып. 2. С. 79–95.
  2. Ермоленко А.В. Теория плоских пластин типа Кармана – Тимошенко – Нагди относительно произвольной базовой плоскости //В мире научных открытий. Красноярск: НИЦ, 2011. № 8.1 (20).C. 336–347.
  3. Михайловский Е.И., Бадокин К.В., Ермоленко А.В. Теория изгиба пластин типа Кармана без гипотез Кирхгофа // Вестник Сыктывкарского университета. Серия 1. Мат. Мех. Инф. 1999.Вып. 3. С. 181–202.
  4. Михайловский Е.И., Ермоленко А.В., Миронов В.В., Тулубенская Е.В. Уточненные нелинейные уравнения в неклассических задачах механики оболочек. Сыктывкар: Изд-во Сыктывкарского университета, 2009. 141 с.
  5. Михайловский Е.И., Тарасов В.Н. О сходимости метода обобщенной реакции в контактных задачах со свободной границей //РАН. ПММ. 1993. Т. 57. Вып. 1. С. 128–136.

IX. Исаков В. Н., Никитенков В. Л., Попов В. А. К семидесятилетию профессора одинца владимира петровича

Текст статьи

Список литературы

  1. Вершик А. М., Виро О. Я., Исаков В. Н., Леонов Г. А.,ПратусевичМ.Я., Хавин В.П., Широков Н.А. Одинец Владимир Петрович (к шестидесяти пятилетию со дня рождения) //Владикавказский математический журнал. 2010, Т. 12. Вып. 4.С. 79–81.
  2. Попов В.А. Кафедра математики Коми пединститута: история становления и развития. Сыктывкар: Коми пединститут, 2012.216 с.

Вестник 1 (21) 2016

Выпуск 1 (21) 2016

I. Котелина Н. О. Интерполяция с помощью в-сплайновых кривых

Текст статьи

Статья посвящена задаче интерполяции точек при помощи B-сплайновых кривых. Рассматриваются методы глобальной интерполяции, при которых составляется и решается система линейных уравнений.

Ключевые слова:NURBS, B-сплайн кривые, интерполяция.

Список литературы

  1. Piegl L., Tiller W. The NURBS book. 2nd Edition. New York: Springer-Verlag, 1995 – 1997. 327 р.
  2. Голованов Н. Н. Геометрическое моделирование. М.: Изд-во Физико-математической литературы, 2002. 472 c.
  3. Завьялов Ю. С. , Квасов Б. И. , Мирошниченко В. Л. Методы сплайн-функций. М.: Наука, 1980. 350 c.
  4. Хилл Ф. OpenGL. Программирование компьютерной графики. Для профессионалов. СПб.: Питер, 2002. 1088 c.

Для цитирования:Котелина Н. О. Интерполяция с помощью B- сплайновых кривых // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 3–8.

II. Макаров П. А. Рекуррентный метод определения отражающих свойств многослойных плёночных покрытий

Текст статьи

Разработан алгоритм вычисления коэффициентов отражения, прохождения и поглощения электромагнитной энергии плоско-поляризованных монохроматических электромагнитных волн, распространяющихся в многослойных плёночных системах. Опреде-лены границы применимости метода.

Ключевые слова:многослойные оптические покрытия, граничные условия, отражение, прохождение электромагнитных волн.

Список литературы

  1. Cochran J. F., Kambersky V. Ferromagnetic resonance in very thin films // JMMM. Vol. 302. 2006. Pp. 348–361.
  2. D. de Cos, Garcia-Arriabas A., Barandiaran J. M. Ferromagnetic resonance in gigahertz magneto-impedance of multilayer systems // JMMM. Vol. 304. 2006. Pp. 218–221.
  3. Diaz M. de Sihues, Durante-Rincon C. A., Fermin J. R. A ferromagnetic resonance study of NiFe alloy thin films // JMMM. Vol. 316. 2007. Pp. 462–465.
  4. Антонец И. В., Котов Л. Н., Макаров П. А., Голубев Е. А. Наноструктура, проводящие и отражающие свойства тонких плёнок железа и (Fe)x(BaF2)y// ЖТФ. 2010. Т. 80. №9. С. 134–140.
  5. Антонец И. В., Котов Л. Н., Некипелов С. В., Карпушов Е. Н. Проводящие и отражающие свойства тонких металлических плёнок // ЖТФ. 2004. Т. 74. №11. С. 102–106.
  6. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 720 c.
  7. Бузников Н. А., Антонов А. С., Дьячков А. Л., Рахманов А. А. Особенности частотного спектра нелинейного магнитоимпеданса многослойных плёночных структур // ЖТФ. 2004. Т. 74. №5. С. 56–61.
  8. Бучельников В. Д., Бабушкин А. В., Бычков И. В. Коэффициент отражения электромагнитных волн от поверхности пластины феррита кубической симметрии // ФТТ. 2003. Т. 45. №4. С. 663–672.
  9. Гончаров А. А., Игнатенко П. И., Петухов В. В. и др. Состав, структура и свойства наностуктурных плёнок боридов тантала // ЖТФ. 2006. Т. 76. №10. С. 87–90.
  10. Котов Л. Н., Антонец И. В., Королёв Р. И., Макаров П. А. Сопротивление и окисление плёнок железа и влияние верхнего слоя из диэлектриков и металла // Вестник ЧелГУ. Физика. Вып. 12. 2011. Т. 39 (254) С. 57–62.
  11. Курин В. В. Резонансное рассеяние света на наноструктурированных металлических и ферромагнитных плёнках // УФН. 2009. Т. 179. №9. С. 1012–1018.
  12. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика : учебное пособие : в 10 т. Т. VIII. Электродинамика сплошных сред. М.: Физматлит, 2005. 656 c.
  13. Ландсберг Г. С. Оптика. М.: Физматлит, 2010. 848 c.
  14. Перевалов Т. В., Гриценко В. А. Применение и электронная структура диэлектриков с высокой диэлектрической проницаемостью // УФН. 2010. Т. 180. №6. С. 587–603.
  15. Усанов Д. А., Скрипаль А. В., Абрамов А. В., Боголюбов А. С. Измерения толщины нанометровых слоёв металла и электропроводности полупроводника в структурах металл-полупроводник по спектрам отражения и прохождения электромагнитного излучения // ЖТФ. 2006. Т. 76. №5. С. 112–117.
  16. Усанов Д. А., Скрипаль А. В., Абрамов А. В., Боголюбов А. С. Изменение типа резонансного отражения электромагнитного излучения в структурах «нанометровая металлическая плёнка — диэлектрик» // Письма в ЖТФ. 2007. Т. 33. №2. С. 13–22.

Для цитирования:Макаров П. А. Рекуррентный метод определения отражающих свойств многослойных плёночных покрытий // Вест-ник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 9–27.

III. Пименов Р. Р. Обобщения теоремы дезарга: геометрия перпендикулярного

Текст статьи

В статье изучается обобщение теоремы Дезарга, основанное на понятии перпендикулярности и новом понятии «соединитель». Рассматриваются приложения этого обобщения в планиметрии и стереометрии и указывается связь с теоремой о пересечении высот треугольника и с теоремой Хьемслева-Морли.

Ключевые слова:Теорема Дезарга, основания геометрии, перпендикулярность, геометрия прямых, стереометрия.

Список литературы

  1. Kodokostas D. Proving and Generalizing Desargues’ Two-Triangle Theorem in 3-Dimensional Projective Space. Hindawi Publishing Corporation, Geometry. Volume 2014, Article ID 276108.
  2. Бахман Ф. Построение геометрии на основе понятия симметрии / пер. с нем. Р.И. Пименова; под ред. И.М. Яглома. М.: Наука, 1969. 380 с.
  3. Одинец В. П., Шлензак В. А. Избранные главы теории графов : авторизованный перевод с польск. М.; Ижевск: Институт компьютерных исследований, НИЦ «РХД», 2009. 504 с.
  4. Скопенков М. Наглядная геометрия и топология // http://skopenkov.ru: Mikhail Skopenkov’s homepage. URL: http://skopenkov.ru/courses/geometry-16.html (дата обращения: 20.02.2016).

Для цитирования:Пименов Р. Р. Обобщения теоремы Дезарга: геометрия перпендикулярного // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 28–43.

IV. Пименов Р. Р. Обобщения теоремы дезарга: скрытые пространства

Текст статьи

В статье обнаруживается семимерное обобщение теоремы Дезарга, в котором прямые рассматриваются как точки, а трехмерные пространства как прямые. Это служит примером концепции скрытых пространств. Результат обобщается на пространства произвольной размерности. Работа продолжает исследования, начатые в статье «Обобщение теоремы Дезарга: геометрия перпендикулярного».

Ключевые слова:теорема Дезарга, основания геометрии, многомерные пространства, геометрия прямых, стереометрия.

Список литературы

  1. Cameron Peter J. Projective and Polar Spaces // www.maths.qmul.ac.uk: School of Mathematical Sciences. 2000. URL: http://www.maths.qmul.ac.uk/pjc/pps/ (дата обращения: 01.04.2016).
  2. Tabachnikov S. Skewers // https://arxiv.org/archive/math: Cornell University Library. Mathematics. [math.MG] 19 Sep 2015. URL: https://arxiv.org/pdf/1509.05903.pdf (дата обращения: 01.04.2016).
  3. Бахман Ф. Построение геометрии на основе понятия симметрии / пер. с нем. Р.И. Пименова; под ред. И.М. Яглома. М.: Наука, 1969. 380 с.
  4. Пименов Р. Обобщения теоремы Дезарга: геометрия перпендикулярного // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. Вып. 1 (21). 2016. C. 28–43.

Для цитирования:Пименов Р. Р. Обобщения теоремы Дезарга: скрытые пространства // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 44–57.

V. Одинец В. П. Появление названия дисциплины «компьютерные науки» — веление времени

Текст статьи

Представлена краткая история появления в континентальной Европе (за исключением Дании и Швеции), а также в СССР названия новой научной дисциплины (а фактически целого ряда наук) «Информатика», а в остальном мире — дисциплины «Компьютерные науки» (в Дании и Швеции — «datalogy»). Поскольку по определению БРЭ (2008) информатика формально не связана с компьютерами, то логичнее называть новую дисциплину «Ком-пьютерные науки».

Ключевые слова:компьютерные науки, информатика, ценность информации.

Список литературы

  1. Backgraund. Vol. 7, No. 2 (Aug., 1963). Pp. 109–110. Oxford, New Jersey: Blackwell Publishing, The International Studies Association, 1963.
  2. Hopper G. The education of a computer /Proceeding of 1952 ACM Meeting (Pittsburg). Pp. 243–249. New York: ACM, 1952.
  3. McCorduck P. An Interview with Louis Fein. (9 May 1979). Palo Alto, California: Ch. Babbage Institute. The Center for the History of Information Processing University of Minnesota, 1979. 27 p.
  4. Naur P. The Science of Datalogy. Letter to the editor Comm. ACM, Vol. 9, No. 7, 1966, p. 485.
  5. Steinbuch K. Informatik: Automatische Informationsverarbeitung. Berlin: SEG–Nachrichten, 1957.
  6. Sveinsdottir E., Frokjaer E. Datalogy — the Copenhagen Tradition of Computer Science. BIT(Nordisk Tidskrift for Informationsbehandling), Vol. 28(3), 1988. 22 p.
  7. Wiener N. Cybernetics: Or Control and Communication in the Animal and the Machine. Paris: (Hermann&Сie) & Camb. Mass. (MIT Press), 1948. 2nd revised ed 1961. New York–London: Wiley, 1961. 212 p. (Винер Н. Кибернетика, или Управление и связь в животном и машине./ Пер. с англ. И.В. Соловьева и Г.Н. Поварова; Под ред. Г.Н. Поварова. 2–е издание. М.: Наука, 1983. 344 с.)
  8. Ершов А. П., Монахов В. М., Бешенков С. А. и др. Основы информатики и вычислительной техники / под ред. А.П. Ершова и В.М. Монахова. М.: Просвещение, 1985. Ч. 1, 2. 96 с.
  9. Игнатьев М. Б. Кибернетическая картина мира. Сложные киберфизические системы : учебное пособие / предисл. акад. РАН С.В. Емельянова. 3–е изд., перераб. и доп. СПб.: ГУАП, 2014. 472 с.
  10. Крайнева И. А. Страницы биографии академика А.П. Ер-шова //Материалы международной конференции памяти академика А.П. Ершова. «Перспективы систем информатики» (15–19 июня 2009). Новосибирск: Изд-во Института систем информатики СО РАН, 2009.
  11. Михайлов А. И. и др. Научная информация. М.: Издание ВИНИТИ АН СССР, 1961. 27 с.
  12. Михайлов А. И, Чёрный А. И., Гиляровский Р. С. Основы научной информации / предисл. акад. А.Н. Несмеянова. М.: Наука, 1965. 655 с.
  13. Одинец В. П. Зарисовки по истории компьютерных наук. Сыктывкар: Изд-во КГПИ, 2013. 420 с.
  14. Фрадков А. Л. Кибернетическая физика: принципы и примеры. СПб.: Наука, 2003. 208 с.
  15. Харкевич А. А. Избранные труды в трёх томах. Т. 3. Теорияинформации. Опознание образов. М.: Наука, 1973. 524 с.
  16. Большая российская энциклопедия. М.: Российскаяэнциклопедия, 2008. T. XI.
  17. Иванов И. И. Харкевич А. А. // Большая Советская энциклопедия / под ред. А.М. Прохорова. 1978. Т. 28. С. 590.
  18. Математический энциклопедический словарь (Информатика). М.: Советская энциклопедия, 1988. С. 244. 847 с.

Для цитирования:Одинец В. П. Появление названия дисциплины «Компьютерные Науки» — веление времени // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 58–68.

VI. Одинец В. П. Некоторые комментарии к сравнению егэ по математике (расширенный уровень, май 2016) в польше и россии

Текст статьи

В работе проведено сравнение выпускных работ по математике (ЕГЭ расширенного уровня) по форме и по содержанию в Польше и России.

Ключевые слова:выпускная работа по математике (ЕГЭ), олимпиады по математике, специалисты.

Список литературы

  1. Леонтьева Н. В. К вопросу о формировании системы критериев для оценивания достижений учащихся средней школы по математике // Математический вестник педвузов и университетов Волго-Вятского региона : периодический межвузовский сборникнаучно-методических работ. Киров: Науч. Изд-во ВятГУ, 2016. Вып. 18. C. 271-276. 400 с.
  2. Одинец В. П. О некоторых проблемах подготовки аспирантов по теории и методике обучения математике // Вестник Московского ун-та. Серия 20. № 4 (2012). C. 3–8.
  3. Одинец В. П. К 10-летию Болонского процесса // Вестник Московского ун-та. Серия 20. №1 (2014). C. 3–10.
  4. Тестов В. А. Проблемы перехода математического образования к новой парадигме в информационном обществе // Труды X международных Колмогоровских чтений : сборник статей. Ярославль: Изд-во ЯГПУ, 2012. С. 94–97. 248 с.

Для цитирования:Одинец В. П. Некоторые комментарии к сравнению ЕГЭ по математике (расширенный уровень, май 2016) в Польше и России // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 69–76.

VII. Устюгов В. А. Формула смита – бельерса

Текст статьи

В статье дан краткий исторический обзор исследований ферромагнитного резонанса и приведен вывод формулы Смита – Бельерса для расчета положения и ширины резонансной линии. Приведен пример расчета резонансной частоты однодоменной частицы эллипсоидальной формы.

Ключевые слова:ферромагнетизм, резонансная частота.

Список литературы

  1. Coey, J. Magnetism and Magnetic Materials / J. Coey. Cambridge University Press, 2010. 633 p.
  2. Osborn, J. A. Demagnetizing factors of the general ellipsoid / J. A. Osborn // Phys. Rev. B. 1945. vol. 67. Pp. 352–357.
  3. Suhl, H. Ferromagnetic resonance in nickel ferrite / H. Suhl // Phys. Rev. 1954. Vol. 97. Pp. 555–557.
  4. Smith J., Beljers H. J. Ferromagnetic resonance absorbtion in BaFe12O19, a highly anisotropic crystall // Philips Res. Rep. 1955. Vol. 10. Pp. 113-130.
  5. Ферромагнитный резонанс / под ред. С. В. Вонсовского. М.: Государственное издательство физико-математической литературы, 1961. 344 c.
  6. Гуревич А. Г., Мелков Г. А. Магнитные колебания и волны. М.: Физматлит, 1994. 464 c.

Для цитирования:Устюгов В. А. Формула Смита – Бельерса // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 77–85.

VIII. Носов Л. С., Вечерский В. В., Зудин В. С., Можайкин А. В. Кодирование речевой информации в системах ip-телефонии

Текст статьи

В данной статье рассмотрена защита речевой информации при ее передаче по системам IP-телефонии, поскольку данный канал потенциально подвержен вмешательству с целью нарушения конфиденциальности переговоров. Задача защиты речевой информации от перехвата актуальна как для обычных пользователей (в повседневных целях), так и для различных организаций, фирмили компаний во избежание перехвата коммерческих секретов конкурентами.

В работе предложен способ кодирования аудиоканала, создано собственное минималистичное программное обеспечение, позволяющее производить кодирование/декодирование речевой информации в частотной области.

Ключевые слова:IP-телефония, защита IP-телефонии, разборчивость речи.

Список литературы

  1. James W. Cooley, John W. Tukey An Algorithm for the Machine Calculation of Complex Fourier Series // Mathematics of Computation, 1965. Pp. 297–301.
  2. Юкио Сато. Без паники! Цифровая обработка сигналов / пер. с яп. Т. Г. Селиной. М.: Додэка-XXI, 2010. 176 с.
  3. PulseAudio Documentation // http://freedesktop.org: Software development management system. URL: http://freedesktop.org/software/pulseaudio/doxygen/ (дата обращения: 17.07.2016).
  4. ALSA project — the C library reference. http://www.alsa-project.org: Advanced Linux Sound Architecture (ALSA) project homepage. URL: http://www.alsa-project.org/alsa-doc/alsa-lib/ (дата обращения: 17.07.2016).
  5. JACK Audio Connection Kit. URL: http://www.jackaudio.org/ (дата обращения: 17.07.2016).

Для цитирования:Носов Л. С., Вечерский В. В., Зудин В. С., Можайкин А. В. Кодирование речевой информации в системах IP-телефонии // Вестник Сыктывкарского университета. Сер. 1:Математика. Механика. Информатика. 2016. Вып. 1 (21). C.86–99.

IX. Одинец В. П., Попов В. А. Валерьян николаевич исаков (к семидесятилетию со дня рождения)

Текст статьи

Список литературы

  1. Валерьян Исаков ректор Коми государственного педагогического института // http://ktovobrnauke.ru/: Федеральный специализированный журнал «Кто есть Кто в образовании и науке». 2009. № 1(1). URL: http://ktovobrnauke.ru/people/valeryan-isakov.html (дата обращения: 10.05.2016).
  2. Валерьян Николаевич Исаков (к 65-летию со дня рождения) // Вестник Сыктывкарского университета. Серия 1: Математика. Механика. Информатика. 2011. Вып. 13. С. 155–159.
  3. Жданов Л.А. Исаков Валерьян Николаевич // Город Сыктывкар: Энциклопедия. Сыктывкар: КНЦ УрО РАН, 2010.
  4. Кириллова Н. Инновации северного вуза // http://ktovobrnauke.ru/: Федеральный специализированный журнал «Кто есть Кто в образовании и науке». 2009. № 1(1). URL:http://ktovobrnauke.ru/2009/1/innovacii-severnogo-vuza.html (дата обращения: 10.05.2016).
  5. Одинец В. П., Попов В. А. Исаков Валерьян Николаевич // Ректоры (директоры) Коми пединститута / Л. А. Жданов, В. А. Попов, Н. И. Сурков и др. Сыктывкар: Коми пединститут, 2012. С. 100–107.
  6. Попов В. А. Кафедра математики Коми пединститута: история становления и развития / В. А. Попов. Коми пединститут. Сыктывкар, 2012. 216 с.

Для цитирования:Одинец В. П., Попов В. А. Валерьян Николаевич Исаков (к семидесятилетию со дня рождения) // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 100–104.

Вестник 1 (22) 2017

Выпуск 1 (22) 2017

I. Хозяинов С. А.  Классификация текстов методами распознавания образов

Текст статьи

Статья демонстрирует процесс классификации текстов методами распознавания образов. В качестве примера рассмотрена проблема авторства статей, приписываемых А. С. Пушкину. Предложены способы повышения надежности распознающей системы.

Ключевые слова:классификация текстов, методы распознавания образов, атрибуция, А. С. Пушкин.

Список литературы

  1. Бонгард М. М. Проблема узнавания. М.: Наука, 1967. 320 с.
  2. В поисках потерянного автора: Этюды атрибуции / М. А. Марусенко, Б. Л. Бессонов, Л. М. Богданова и др. СПб.: Филол. ф-т С.-Петерб. гос. ун-та, 2001. 216 с.
  3. Марусенко М. А. Атрибуция анонимных и псевдонимных литературных произведений методами распознавания образов. Л.: Изд-во ЛГУ, 1990. 168 с.
  4. Родионова Е. С., Хозяинов С. А., Митрофанова О. А. Корпусы текстов в исследованиях по атрибуции литературных произведений // Труды международной конференции «Корпусная лингвистика — 2008». СПб.: С.-Петербургский гос. университет, Факультет филологии и искусств, 2008. С. 338—349.
  5. Хозяинов С. А. Атрибуция публицистики, приписываемой А. С. Пушкину // Прикладная и математическая лингвистика : материалы секции XXXVII Международной филологической конференции, 11-15 марта 2008 г., Санкт-Петербург / отв. ред. Т. Г. Скребцова. СПб.: Ф-т филологии и искусств СПбГУ, 2008. С. 20—30.
  6. Хозяинов С. А. Атрибуция публицистики, приписываемой А. С. Пушкину. Решение проблемы авторства методами распознавания образов / LAP LAMBERT Academic Publishing. Saarbr¨ucken, 2012. 252 с.
  7. Хозяинов С. А. Некоторые проблемы и методы квантитативно-структурного изучения авторских стилей // Известия Российского государственного педагогического университета им. А. И. Герцена. 2008. № 28 (63). С. 378—383.
  8. Якубайтис Т. А., Скляревич А. Н. Вероятностная атрибуция типа текста по нескольким морфологическим признакам. Рига: ИЭВТ, 1982. 53 с.

Для цитирования:Хозяинов С. А. Классификация текстов методами распознавания образов // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 3–20.

II. Вечтомов M., Лубягина Е. Н. Определяемость t1-пространств решеткой подалгебр полуколец непрерывных частичных действительнозначных функций на них

Текст статьи

Работа относится к общей теории полуколец непрерывных функций. Рассматриваются подалгебры полуколец CP(X) непрерывных частичных функций на топологических пространствах X со значением в топологическом поле R действительных чисел. Изучаются минимальные и максимальные подалгебры R-алгебры CP(X). Доказана теорема определяемости произвольного T1-пространства X решеткой A(X) всех подалгебр полукольца CP(X).

Ключевые слова:полукольцо, поле действительных чисел, частичная действительнозначная функция, подалгебра.

Список литературы

  1. Вечтомов Е. М. Решетка подалгебр колец непрерывных функций и хьюиттовские пространства // Математические заметки. 1997. Т. 62. №5. С. 687–693.
  2. Вечтомов Е. М., Лубягина Е. Н. О полукольцах частичных функций // Вестник Сыктывкарского университета. Серия 1: Математика. Механика. Информатика. 2014. Вып. 19. С. 3–11.
  3. Вечтомов Е. М., Лубягина Е. Н., Сидоров В. В., Чупраков Д. В. Элементы функциональной алгебры : монография : в 2 т. / под ред. Е. М. Вечтомова. Киров: ООО «Издательство ”Радуга-ПРЕСС“», 2016. Т. 1. 384 с.
  4. Вечтомов Е. М., Лубягина Е. Н., Сидоров В. В., Чупраков Д. В. Элементы функциональной алгебры : монография : в 2 т. / под ред. Е. М. Вечтомова. Киров: ООО «Издательство ” Радуга-ПРЕСС“», 2016. Т. 2. 316 с.
  5. Гретцер Г. Теория решеток. М.: Мир, 1982. 456 с.
  6. Энгелькинг Р. Общая топология. М.: Мир, 1986. 752 с.
  7. Gillman L., Jerison M. Rings of continuous functions. N. Y.: Springer-Verlang, 1976. 300 p.

Для цитирования:Вечтомов Е. М., Лубягина Е. Н. Определяе- мость T1-пространств решеткой подалгебр полуколец непрерывных частичных действительнозначных функций на них // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 21–28.

III. Вечтомов M., Орлова И. В. Идеалы и конгруэнции циклических полуколец

Текст статьи

Изучаются идеалы и конгруэнции циклических полуколец как с коммутативным, так и с некоммутативным сложением.

Ключевые слова:полукольцо, полуполе, циклическое полукольцо, идеал, отношение эквивалентности, конгруэнция.

Список литературы

  1. Бестужев А. С., Вечтомов Е. М. Циклические полукольца с коммутативным сложением // Вестник Сыктывкарского университета. Сер.1: Математика. Механика. Информатика. 2015. Вып. 1(20). C. 8–39.
  2. Вечтомов Е. М. Введение в полукольца. Киров: ВГПУ, 2000. 44 с.
  3. Вечтомов Е. М., Бестужев А. С., Орлова И. В. Строение циклических полуколец // IX Всероссийская научная конференция «Математическое моделирование развивающейся экономики, экологии и технологий», ЭКОМОД — 2016 : cборник материалов конференции. Киров: Изд–во ВятГУ, 2016. С. 21–30.
  4. Вечтомов Е. М., Лубягина (Орлова) И. В. Циклические полукольца с идемпотентным некоммутативным сложением // Фундаментальная и прикладная математика. 2011/2012. Т. 17. Вып. 1. С. 33–52.
  5. Вечтомов E. М., Орлова И. В. Циклические полукольца с неидемпотентным некоммутативным сложением // Фундаментальная и прикладная математика. 2015. Т. 20. Вып. 6. C. 17–41.
  6. Орлова И. В. Идеалы и конгруэнции циклических полуколец с некоммутативным сложением // Труды Математического центра им. Н. И. Лобачевского. Казань: Казанское математическое общество, 2015. Т. 52. С. 118–120.
  7. Скорняков Л. А. Элементы алгебры. М.: Наука, 1986. 240 c.
  8. Brown T. Lazerson E. On fifinitely generated idempotent semigroups // Semigroup Forum. 2009. Vol. 78. Iss. 1. P. 183–186.

Для цитирования: Вечтомов Е. М., Орлова И. В. Идеалы и конгруэнции циклических полуколец // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 29–40.

IV. Белых Е. А. Обучение каскадов хаара

Текст статьи

Данная статья посвящена каскадам Хаара и базируется на статье Viola P., Jones M. «Rapid Object Detection using a Boosted Cascade of Simple Features». Здесь описаны некоторые тонкости обучения каскадов, которые не были описаны в оригинальной статье. В частности, это метод перебора порогов слабых классификаторов, а также оптимизированный метод построения каскада классификаторов.

Ключевые слова:распознавание образов, машинное обучение, классификация, обработка изображений.

Список литературы

1. Viola P., Jones M. Rapid Object Detection using a Boosted Cascade of Simple Features // 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2001. Vol. 01. 511 p.

2. Freund Y., Schapire R. E. Decision-Theoretic Generalization of OnLine Learning and an Application to Boosting // Journal of computer and system sciences 55. 1997. №SS971504. Pp. 119–139.

Для цитирования:Белых Е. А. Обучение каскадов Хаара // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 41–53.

V. Одинец В. П. Об истории математических олимпиад в ленинграде — санкт-петербурге

Текст статьи

Статья посвящена истории решения проблемы состязательности в школьном образовании, одной из форм которой являются математические олимпиады, появившиеся в России в 1934 году в Санкт-Петербурге (тогда Ленинграде). Изложение доведено до последнего десятилетия.

Ключевые слова: математические олимпиады, специализированныепрофессиональные школы.

Список литературы

  1. Атья М. Математика и компьютерная революция // Известия РАН. Серия Математическая. 2016. T. 80. № 4. (Перевод с англ. А.И. Штерна статьи 1984 г.) C. 5–16.
  2. Залгаллер В. А. Выпуклые многогранники с правильными гранями // Записки научных семинаров ЛОМИ им. В.А. Стеклова АН СССР. М.: Наука. 1967. T. 2. 211 с.
  3. Морозова Е. А., Петраков И. С. Международные математические олимпиады. 3-е изд. , испр. и доп. М.: Просвещение, 1971. 254 с.
  4. Одинец В. П. Из воспоминаний о математических олимпиадах начала 60-х гг. // Математика в школе. 1998. № 2. C. 94–96.
  5. Рукшин С. Е. Математические соревнования в Ленинграде–Санкт-Петербурге. Первые 50 лет. Ростов, Изд-кий центр «МарТ», 2000. 320 с.
  6. Фомин Д.В. Санкт-Петербургские математические олимпиады. СПб.: Политехника, 1994. 309 с.
  7. Труды I Всероссийского съезда преподавателей математики.СПБ.: Тип. «Север», 1913. Т. I. 609 с.; Т. II. 363 с.; Т. III. 113 c.

Для цитирования:Одинец В. П. Об истории математических олимпиад в Ленинграде — Санкт-Петербурге // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 54–60.

VI. Устюгов В. А. Модель изинга

Текст статьи

В статье дан обзор математического аппарата модели Изинга, теории усредненного поля. Сопоставлены значения критической температуры, получаемые аналитически на базе теории усредненного поля и путем численного моделирования. Описаны причины расхождения этих значений. Показана связь зависимости средней намагниченности, средней энергии спина системы, термодинамических параметров системы от температуры и критического состояния системы при фазовом переходе.

Ключевые слова:ферромагнетизм, модель Изинга, термодинамика.

Список литературы

  1. Giordano N. J., Nakanishi H. Computational physics. Pearson/Prentice Hall, 2006. 544 p.
  2. Coey J. Magnetism and Magnetic Materials. Cambridge University Press, 2010. 633 p.
  3. Биндер К., Хеерманн Д. В. Моделирование методом Монте-Карло в статистической физике. М.: ФИЗМАТЛИТ, 1995. 144 с.
  4. Гулд Х., Тобочник Я. Компьютерное моделирование в физике. М.: Мир, 1990. 400 с.

Для цитирования:Устюгов В. А. Модель Изинга // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 61–71.

VII. Калинин И., Дозморов А. В. Теорема помпейю и ее обобщения

Текст статьи

Ключевые слова:теорема Помпейю, теорема Лагранжа, дифференцируемая функция.

Список литературы

  1. Dragomir S. S. An inequality of Ostrowski type via Pompeiu’s mean value theorem // http://www.emis.de/journals/JIPAM/index-4.html: Journal of Inequalities in Pure and Applied Mathematics. 6(3) Art. 83, 2005. URL: http://www.emis.de/journals/JIPAM/article556.html?sid=556 (date of the application: 09.03.2017).
  2. Pompeiu D. Sur une proposition analogue au th´eor`eme des accroissements finis, Mathematica, Cluj, Romania, 22, 1946, p. 143–146.
  3. Finta B. A generalization of the Lagrange mean value theorem, Octogon, 4, № 2, 1996, p. 38–40.

Для цитирования:Калинин C. И., Дозморов А. В. Теорема Помпейю и ее обобщения // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 72–78.

VIII. Певный А. Б. Юркина М. Н. Неравенства для суммы трех квадратных трехчленов

Текст статьи

Для f(x) = ax2+ bx + c, a >0 устанавливается неравенство f(x) +

+ f(y) + f(z) ≥ 3f(1), где числа x, y, z положительны и удовлетворяют условиям x + y + z = 1 или xyz = 1.

Ключевые слова:квадратный трехчлен, экстремальная задача, минимум, ограничение, неравенство.

Список литературы

  1. Dannan F.M., Sitnik S.M. The Damascus inequality // Probl. Anal. Issues Anal. Vol 5 (23). No. 2. 2016. Pp. 3-19.

Для цитирования:Певный А. Б., Юркина М. Н. Неравенства для суммы трех квадратных трехчленов // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 79–84.

IX. Одинец В. П. К семидесятилетию профессора александра борисовича певного

Текст статьи

Интервью в связи с исполнившимся 1 марта 2017 года 70–летием профессора, доктора физико-математических наук Александра Борисовича Певного.

Для цитирования: ОдинецВ. П.К семидесятилетию профессора Александра Борисовича Певного // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 1 (22). C. 85–86.

Вестник 2 (23) 2017

Выпуск 2 (23) 2017

I. Беляева Н. А., Яковлева А.Ф. Фронтальная волна напорного течения

Текст статьи

Строится неоднородное решение диффузионно-кинетического уравнения модели напорного течения структурированной жидкости в области немонотонности расходно-напорной характеристики. Решение соответствует гетероклинической траектории, соединяющей два устойчивых однородных состояния.

Ключевые слова: напорное течение, однородные равновесные состояния, гетероклиническая траектория, бегущая волна.

Список литературы:

1. Беляева Н. А., Сажина А. Н. Анализ усредненного напорного течения // Двадцать третья годичная сессия Ученого совета Сыктывкарского государственного университета имени Питирима Сорокина (Февральские чтения) : сборник материалов / отв.ред. Н. С. Сергиева. Сыктывкар: Изд–во СГУ им. Питирима Сорокина, 2016. C. 60–69.

2. Колмогоров А. Н., Петровский И. Г., Пискунов Н. С. Исследование уравнения диффузии, соединенной с возрастанием количества вещества, и его применение к одной биологической проблеме. М.: Бюл. МГУ. Секция А, 1937.

3. Холодниок М., Кулич А., Кубичек М., Марек М. Методы анализа нелинейных динамических моделей. М.: Мир, 1991. 368 c.

4. Худяев С. И. Пороговые явления в нелинейных уравнениях. М.: Физматлит, 2003. 272 с.

Для цитирования: Беляева Н. А., Яковлева А. Ф. Фронтальная волна напорного течения // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 3–12.

II. Михайлов А. В. О колебаниях кольца, подкрепленного нитями

Текст статьи

Рассматриваются задачи о колебаниях упругих колец, подкрепленных упругими нитями; задачи об устойчивости упругих колец, находящихся под действием пульсирующей нагрузки.

Ключевые слова: кольцо, колебание, устойчивость, собственная частота, уравнение Эйлера – Остроградского, матрица монодромии, уравнение Матье.

Список литературы:

1. Абромовиц М., Стиган И. Справочник по специальным функциям, пер. с англ. под ред. В.А. Диткиной и Л.Н Кармазиной. М.: Наука, 1979. 832 с.

2. Вольмир А. С. Устойчивость деформируемых систем. М.: Наука, 1967. 984 с.

3. Гельфанд И. М., Фомин С .В. Вариационное исчисление. М.: Гос. изд-во физ.-матем. литературы, 1961. 228 с.

4. Лерман Л. М. Линейные дифференциальные уравнения и системы. Н. Новгород: Нижегородский госуниверситет, 2012. 89 с.

5. Мэтьюз Дж., Уокер Р. Математические методы в физике : пер. с англ. М.: Атомиздат, 1972. 392 с.

6. Пановко Я. Г. Основы прикладной теории упругих колебаний. М.: Машиностроение, 1967. 318 с.

7. Тарасов В. Н. Методы оптимизации в исследовании конструктивно-нелинейных задач механики упругих систем. Сыктывкар: КНЦ УрО РАН, 2013. 238 с. 8. Улам С. Нерешенные математические задачи / пер. с англ. З.Я. Шапиро. М.: Наука, 1964. 168 с. 9. Фадеев Л. Д., Якубовский О. А. Лекции по квантовой механике для студентов-математиков : учеб. пособие Л.: Изд-во Ленингр. унта, 1980. 200 с.

Для цитирования: Михайлов А. В. О колебаниях кольца, подкрепленного нитями // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 13–28.

III. Пименов Р. Р. Трактовки теорем Паппа: перпендикулярность и инволютивность

Текст статьи

Дорисовав к чертежу проекции стрелки, мы увидим инволютивное преобразование. Геометрические чертежи превращаются в диаграммы инволюций и их композиций. Это упрощает понимание и работу с известными теоремами, а при обобщении на многомерные пространства легко связывает геометрию сфер с проективным пространством и неевклидовыми геометриями. Если к теореме Паппа применить геометрию перпендикулярного и вместо слова инцидентность использовать слово перпендикулярность, мы получим истинные и содержательные геометрические утверждения.

Ключевые слова: теорема Паппа – Паскаля, инволютивность, перпендикулярность, проективная геометрия, инверсия.

Список литературы:

1. Бахман Ф. Построение геометрии на основе понятия симметрии / пер. с нем. Р. И. Пименова; под ред. И. М. Яглома. М.: Наука, 1969. 380 с.

2. Пименов Р. Р. Обобщения теоремы Дезарга: геометрия перпендикулярного // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 28–43.

3. Пименов Р. Р. Обобщения теоремы Дезарга: скрытые пространства // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 44–57.

4. Пименов Р. Р. Отображения сферы и неевклидовы геометрии // Математическое просвещение. 1999. Cер. 3. Bып. 3. C. 158–166.

5. Пименов Р. Р. Эстетическая геометрия или теория симметрий. СПб.: Школьная лига, 2014. 288 с.

6. Харстсхорн Р. Основы проективной геометрии / пер. с англ. Е. Б. Шабат; под ред. И. М. Яглома. M: Мир, 1970.

7. Tabachnikov S. Skewers // Arnold Mathematical Journal. 2. 2016. Pp. 171–193.

Для цитирования: Пименов Р. Р. Трактовки теорем Паппа: перпендикулярность и инволютивность // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 29–45.

IV. Макаров П. А. О вариационных принципах механики консервативных и неконсервативных систем

Текст статьи

На основе принципа Гамильтона – Остроградского, применённого к движению консервативных и неконсервативных систем, составлены однородные и неоднородные уравнения Эйлера—Лагранжа. Рассмотрен пример плоского движения материальной точки. Определено влияние диссипативных сил на характеристики движения.

Ключевые слова: механическое действие по Гамильтону, вариационные принципы движения, уравнение Эйлера – Лагранжа, прямой и окольный путь, диссипация энергии.

Список литературы:

1. Веретенников В. Г., Синицин В. А. Метод переменного действия. 2-е изд., исправ. и доп. М.: ФИЗМАТЛИТ, 2005. 272 c.

2. Веретенников В. Г., Синицин В. А. Теоретическая механика (дополнения к общим разделам). М.: ФИЗМАТЛИТ, 2006. 416 c.

3. Гантмахер Ф. Р. Лекции по аналитической механике. 2-е. изд., исправ. М.: Наука, 1966. 300 с.

4. Голдстейн Г. Классическая механика. М.: Наука, 1975. 416 c.

5. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика : учеб. пос.: в 10 т. Т.I. Механика. 5-е изд., стереот. М.: ФИЗМАТЛИТ, 2007. 224 c.

6. Слудский Ф. А. Заметка о начале наименьшего действия // Вариационные принципы механики / под ред. Л. С. Полака М.: Физматгиз, 1959. C. 388–391.

Для цитирования: Макаров П. А. О вариационных принципах механики консервативных и неконсервативных систем // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 46–59.

V. Одинец В. П. Зенон Иванович Боревич (1922– 1995) (К 95-й годовщине со дня рождения)

Текст статьи

Статья посвящена биографии известного алгебраиста профессора Зенона Ивановича Боревича, декана математико-механического факультета Ленинградского государственного университета в 1973–83 годы, увиденной со стороны польских математиков, а также контактам З.И. Боревича с Польшей с подробными комментариями автора.

Ключевые слова: З.И. Боревич, блокада Ленинграда, гомологическая алгебра, теория линейных групп, общество «Полония».

Список литературы:

1. Narkiewicz W., Wie¸slaw W. ZenonBorewicz (1922–1995) // Wiadomo´sciMatematyczne. XXXVI. 2000. S. 65–72.

2. Odyniec W. P. O matematykach Leningradu // Wiadomo´sci Matematyczne. XXVII. 1987. S. 279–292.

3. Odyniec W. P. O matematykach Leningradu (Sankt-Petersburga) i nie tylko — 10 lat po´z˙niej // Wiadomo´sci Matematyczne. XXXIV. 1998. S. 149–158.

4. Яковлев А. В. Зенон Иванович Боревич. Вопросы теории представлений алгебр и групп. 5 // Записки научных семинаров ПОМИ. T. 236. 1997. C. 9–12.

Для цитирования: Одинец В. П. Зенон Иванович Боревич (1922– 1995) (К 95-й годовщине со дня рождения) // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 60–69.

VI. Лубягина Е. Н., Тимшина Л. В. Опыт организации учебно-исследовательской деятельности студентов при изучении кривых второго порядка

Текст статьи

В статье предлагаются материалы, которые можно использовать для организации учебно-исследовательской деятельности студентов при изучении кривых второго порядка. Приводятся примеры использования среды GeoGebra.

Ключевые слова: исследовательская деятельность, кривые второго порядка, GeoGebra.

Список литературы:

1. Акопян А. В., Заславский А. А. Геометрические свойства кривых второго порядка. М.: МЦНМО, 2007. 136 с.

2. Атанасян Л. С., Атанасян В. А. Сборник задач по геометрии : учебное пособие для студентов физ.-мат. фак. пед. ин-тов. М.: Просвещение, 1973. Ч. I. 480 c.

3. Безумова О. Л., Овчинникова Р. П., Троицкая О. Н., Троицкий А. Г., Форкунова Л. В., Шабанова М. В., Широкова Т. С., Томилова О. М. Обучение геометрии с использованием возможностей GeoGebra. Архангельск: Кира, 2011. 140 с.

4. Болтянский В. Г. Огибающая // Квант. № 3. 1987. C. 2–7.

5. Вечтомов Е. М., Лубягина Е. Н. Геометрические основы компьютерной графики : учебное пособие. Киров: Изд-во ООО «РадугаПРЕСС», 2015. 164 с.

6. Гурова А. Э. Замечательные кривые вокруг нас. М., 1989. 112 c.

7. Забелина С. Б. Формирование исследовательской компетентности магистрантов математического образования (направление «педагогическое образование») :дис. … канд. пед. наук. М., 2015.

8. Качалова Л. П. Исследовательская компетенция магистрантов: структурно-содержательный анализ // Политематический журнал научных публикаций «Дискуссия». Вып. №3(55). 2015.

9. Руинский А. Инверсные преобразования гиперболы // Матем. просв., сер. 3, 4 (2000). С. 120–126.

10. Смирнов В. И. Курс высшей математики. М.: Наука, 1974. Т. 2. 479 с.

11. Тимшина Л. В. Семинарские занятия по геометрии в вузе // Преподавание математики, физики, информатики в вузах и школах: проблемы содержания, технологии и методики : материалы V Всероссийской науч.-практ. конф. Глазов: ООО «Глазовская типография», 2015. С. 131–133.

12. Чеботарева Э. В. Компьютерный эксперимент с GeoGebra. Казань: Казанский ун-т, 2015. 61 с.

13. Шабанова М. В., Овчинникова Р. П., Ястребов А. В., Павлова М. А., Томилова А. Е., Форкунова Л. В., Удовенко Л.Н., Новоселова Н. Н., Фомина Н. И., Артемьева М. В., Ширикова Т. С., Безумова О. Л., Котова С. Н., Паршева В. В., Патронова Н. Н., Белорукова М. В., Тепляков В. В., Рогушина Т. П., Тархов Е. А., Троицкая О. Н., Чиркова Л. Н. Экспериментальная математика в школе. Исследовательское обучение : монография по исследовательской деятельности. М.: Издательский дом «Академия Естествознания», 2016. 300 с.

14. Ширикова Т. С. Методика обучения учащихся основной школы доказательству теорем при изучении геометрии с использованием GeoGebra :дис. … канд. пед. наук. Архангельск, 2014. 15. Яглом И. М., Ашкинузе В. Г. Идеи и методы аффинной и проективной геометрии. М. 1962. Ч. I. 247 c.

Для цитирования:Лубягина Е. Н., Тимшина Л. В. Опыт организации учебно-исследовательской деятельности студентов при изучении кривых второго порядка // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 70–84.

VII. Ермоленко А. В., Осипов К. С. Параллельное программирование в контактных задачах со свободной границей

Текст статьи

Метод обобщенной реакции при расчете контактных задач со свободной границей требует большого количества итераций, на каждой из которых проводится много вычислений. Для ускорения расчетов в статье рассматривается распараллеливание одной контактной задачи с помощью технологии OpenMP на языке C++.

Ключевые слова: пластина, метод обобщенной реакции, контактная задача, параллельные вычисления.

Список литературы:

1. Антонов А. С. Параллельное программирование с использованием технологии OpenMP. М.: Изд-во МГУ, 2009. 77 с.

2. Ермоленко А. В., Гинтнер А. Н. Влияние поперечных сдвигов на понижение напряженного состояния пластины. Теория изгиба пластин типа Кармана без гипотез Кирхгофа // Вестник Сыктывкарского университета. Сер. 1. Математика. Механика. Информатика. Вып. 1 (20). 2015. С. 91–96.

3. Ермоленко А. В. Теория плоских пластин типа Кармана – Тимошенко – Нагди относительно произвольной базовой плоскости // В мире научных открытий. Красноярск: НИЦ, 2011. №8.1 (20). C. 336–347.

4. Михайловский Е. И., Ермоленко А. В., Миронов В. В., Тулубенская Е. В. Уточненные нелинейные уравнения в неклассических задачах механики оболочек. Сыктывкар: Изд-во Сыктывкарского университета, 2009. 141 с.

5. Михайловский Е. И., Тарасов В. Н. О сходимости метода обобщенной реакции в контактных задачах со свободной границей // РАН. ПММ. 1993. Т. 57. Вып. 1. С. 128–136.

Для цитирования: Ермоленко А. В., Осипов К. С. Параллельное программирование в контактных задачах со свободной границей // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 85–91.

VIII. Чупраков Д. В., Ведерникова А. В. О структуре конечных циклических полуколец с идемпотентным коммутативным сложением

Текст статьи

Статья посвящена исследованию конечных идемпотентных циклических полуколец с коммутативным сложением. Авторами установлен критерий существования конечного идемпотентного циклического полукольца с коммутативным сложением, заданного идеалом целых неотрицательных чисел, получены оценки числа элементов КИЦП. Сформулированы алгоритмы вычисления числа элементов по образующим ассоциированного идеала целых неотрицательных чисел.

Ключевые слова: полукольцо, циклическое полукольцо, идемпотент, идеал, натуральное число.

Список литературы:

1. Бестужев А.С. Конечные идемпотентные циклические полукольца // Математический вестник педвузов и университетов Волго-Вятского региона. 2011. Вып. 13. С. 71–78.

2. Бестужев А.С. Вечтомов Е.М. Циклические полукольца с коммутативным сложением // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2015. Вып. 20. С. 8–39.

3. Ведерникова А.В., Чупраков Д.В. О представлении конечных идемпотентных циклических полуколец кортежами целых чисел // Математический вестник педвузов и университетов Волго-Вятского региона. 2017. Вып. 19. С. 70–76.

4. Вечтомов Е.М. Введение в полукольца. Киров: ВГПУ, 2000. 44 с.

5. Вечтомов E.М., Лубягина (Орлова) И.В. Циклические полукольца с идемпотентным некоммутативным сложением // Фундаментальная и прикладная математика. 2012. Т. 17. Вып. 1. C. 33–52.

6. Вечтомов E.М., Орлова И.В. Циклические полукольца с неидемпотентным некоммутативным сложением // Фундаментальная и прикладная математика. 2015. Т. 20. № 6. C. 17–41.

7. Вечтомов Е.М. Мультипликативно циклические полукольца // Технологии продуктивного обучения математике: традиции и новации. Арзамас: Арзамасский филиал ННГУ, 2016. С. 130–140.

8. Вечтомов E.М., Орлова И.В. Идеалы и конгруэнции циклических полуколец // Вестник Сыктывкарского университета. Сер.1: Математика. Механика. Информатика. 2017. Вып. 1(22). C. 29–40.

9. Лубягина И.В. О циклических полукольцах с некоммутативным сложением // Труды Математического центра им. Н.И. Лобачевского. Казань: Издательство Казанского математического общества, 2010. T. 40. C. 212–215.

10. Ноден П., Китте К. Алгебраическая алгоритмика с упражнениями и решениями. М.: Мир, 1999. 720 с.

11. Чермных В.В., Николаева О.В. Об идеалах полукольца натуральных чисел // Математический вестник педвузов и университетов Волго-Вятского региона. 2009. Вып. 11. С. 118–121.

12. Bestugev A.S., Vechtomov E.M. Multiplicativelycyclicsemirings // XIII Международная научная конференция им. Академика М. Кравчука. Киев: Национальный технический университет Украины, 2010. С. 39.

Для цитирования: Чупраков Д. В., Ведерникова А. В. О структуре конечных циклических полуколец с идемпотентным коммутативным сложением // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 92–109.

Вестник 3 (24) 2017

двумерное пространство, принцип левого нижнего угла.

Список литературы:

1. Dyckhoff H. A typology of cutting and packing problems // European Journal of Operational Research. № 44. Pp. 150—152.

2. Залгаллер В. А., Канторович Л. В. Рациональный раскрой промышленных материалов. Новосибирск: Наука, 1971. 300 c.

3. Никитенков В. Л., Холопов А. А. Задачи линейного программирования и методы их решения. Сыктывкар: Изд-во Сыктывкарского университета, 2008. 143 c.

4. Прасолов В. В. Задачи по планиметрии. 4-е изд., доп. М.: МЦНМО, 2001. 584 c.

5. Шабат Б. В. Введение в комплексный анализ. М.: Наука, 1969. 91 c.

6. Benell A. J., Olivera F. J. The geometry of nesting problems: A tutorial // European Journal of Operational Research. 2008. № 184. Pp. 399—402.

7. Coordinate Systems, Transformations and Units // https://www.w3.org: W3C. 6 мая 2017. URL: https://www.w3.org/TR/SVG/coords.html.W3C (дата обращения: 05.10.2017)

Для цитирования: Мельников В. А. Методы представления фигур общего вида для задачи двумерного раскроя // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 11–24.

III. Калинин С. И.  GA-выпуклые функции

Текст статьи

В работе рассматривается класс так называемых GA-выпуклых на промежутке функций. Приводится геометрическая характеризация таких функций, изучаются их свойства, в частности, устанавливаются неравенство Иенсена и его аналог. Формулируются достаточные условия GA-выпуклости и GA-вогнутости функции в терминах производных.

Ключевые слова:GA-выпуклая функция, GA-вогнутая функция, неравенство Иенсена, аналог неравенства Иенсена.

Списоклитературы:

1. Guan Kaizhong GA-convexity and its applications // Anal. Math. 2013. 39. № 3. Pp. 189–208.

2. Xiao-Ming Zhang, Yu-Ming Chu, and Xiao-Hui Zhang. The Hermite-Hadamard type inequality of GA-convex functions and its application // J. of Inequal. and Applics., Vol. 2010. ArticleID 507560, 11 pages, doi:10.1155/2010/507560.

3. Калинин C.И. (α,β)-выпуклые функции, их свойства и некоторые применения // Уфимская международная математическая конференция. Сборник тезисов / отв. ред. Р. Н. Гарифуллин. Уфа: РИЦ БашГУ, 2016. С. 75–76.

4. Abramovich S., Klariˇci´cBakula M., Mati´c M. and Peˇcari´c J. A variant of Jensen–Steffensen’s inequality and quasi-arithmetic means // J. Math. Anal. Applics. 307. 2005. Pp. 370–385.

5. Mercer A. McD. A variant of Jensen’s inequality // J. Inequal. In Pure and Appl. Math. Vol. 4. Issue 4. Article 73. 2003. Pp. 1–2.

Для цитирования: Калинин С. И. GA-выпуклые функции // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 25–42.

IV. Ловягин Ю. Н. Несколько замечаний о проблеме нормируемости булевых алгебр

Текст статьи

Исследуется связь между свойством нормируемости булевой алгебры и существованием на ней полуаддитивной (о)-непрерывной существенно положительной функции. Приводятся критерии, при соблюдении которых полунормируемая булева алгебра не имеет меры.

Ключевые слова: булева алгебра, мера, проблема Д. Магарам.

Список литературы:

1. Порошкин А. Г. Теория меры и интеграла. М.: КомКнига, 2006. 184 с.

2. Порошкин А. Г. Упорядоченные множества. Булевы алгебры. Сыктывкар: СыктГУ, 1987. 85 с.

3. Halmos P. Measure theory. Berlin-Haidelberg-New York: Springer, 1950. 304 p.

4. Kelley J. General topology. Toronto-London-New York: D van Nostard company, 1957. 432 p.

5. Владимиров Д. А. Булевы алгебры. М.: Наука, 1969. 318 с.

6. Владимиров Д. А. Теория булевых алгебр. СПб.: Изд-во С.Петербургского университета, 2000. 616 с.

7. Halmos P. Lectures on Boolean algebras. Prinston, New-Jersey. D. van Nostard company, 1963. 96 p.

8. Mayaram D. An algebraic characterization of measure algebras // Ann. Math., 1947. V. 48, № 1. Pp. 154–167.

9. Попов В. А. Аддитивные и полуаддитивные функции на булевых алгебрах // Сиб. мат. ж. 1976. Т. 17. № 2. С. 331–339.

10. Алексюк В. Н. Теорема о миноранте. Счетность проблемы Магарам// Матзаметки. 1977. Т. 21. № 5. С. 597–604.

11. Ловягин Ю. Н. Булевы алгебры с достаточным числом непрерывных квазимер. Деп. в ВИНИТИ, № 3111–В97. 1997. 24 с.

12. Ловягин Ю. Н. О некоторых свойствах булевых алгебр // Некоторые актуальные проблемы современной математики и математического образования : материалы научной конференции «Герценовские чтения — 2009». СПб.: РГПУ им. А. И. Герцена, 2009. С. 131–135.

13. Ловягин Ю. Н. Регулярные и полунормированные булевы алгебры // Некоторые актуальные проблемы современной математики и математического образования : материалы научной конференции «Герценовские чтения — 2011». СПб.: РГПУ им. А. И. Герцена, 2011. С. 146–148.

14. Ловягин Ю. Н. Пример регулярной, но ненормированной булевы алгебры // Некоторые актуальные проблемы современной математики и математического образования : материалы научной конференции «Герценовские чтения — 2012». СПб.: РГПУ им. А. И. Герцена, 2012. С. 129–130.

15. Ловягин Ю. Н. О проблеме нормируемости булевых алгебр // Известия российского педагогического университета им. А. И. Герцена. 2013. № 154. С. 23–33. 16. Gaifman H. Cjncerning measure on Boolean algebras // Pacif. J. Math. 1964. V. 14, № 1. Pp. 61–73.

Для цитирования: Ловягин Ю. Н. Несколько замечаний о проблеме нормируемости булевых алгебр // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 43–55.

V. Пименов Р. Р. Геометрия перпендикулярного: тупые и острые углы в известных теоремах

Текст статьи

В статье вводится и изучается понятие «невозможная конфигурация тупых и острых углов» и его связь с теоремами о перпендикулярности на плоскости и в многомерном пространстве. Исследуются две теоремы: о пересечении высот треугольника и о проекциях, названные в статье «теорема домино». Обе теоремы обобщаются на произвольное число прямых, и обнаруживаются связанные с ними невозможные конфигурации углов. Указывается как с помощью непрерывности и метода малых шевелений из невозможности определенной конфигурации углов получать теорему о перпендикулярности прямых: прямой угол рассматривается как пограничное положение угла. Рассматриваются применение этих методов в неевклидовых геометриях и выражение их языком векторной алгебры.

Ключевые слова: перпендикулярность, непрерывность, проекция, ориентация, высота треугольника.

Список литературы:

1. Бахман Ф. Построение геометрии на основе понятия симметрии / пер. с нем. Р.И. Пименова; под ред. И.М. Яглома. М.: Наука, 1969. 380 с.

2. Tabachnikov S. Skewers // ArnoldMathematicalJournal. 2, 2016. Pp. 171–193.

3. Пименов Р. Р. К логическим и наглядно-геометрическим свойствам ориентации 1 // Математический вестник педвузов и университетов Волго-Вятского региона : периодический межвузовский сборник научно-методических работ. Киров: Научн. изд-во ВятГУ, 2016. Вып. 18. C. 99–114.

4. Пименов Р. Р. К логическим и наглядно-геометрическим свойствам ориентации 2 // Математический вестник педвузов и университетов Волго-Вятского региона : периодический межвузовский сборник научно-методических работ. Киров: Научн. изд-во ВятГУ, 2016. Вып. 18. C. 115–126.

5. Пименов Р. Р. Обобщения теоремы Дезарга: геометрия перпендикулярного // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика, 2016. Вып. 1 (21). C. 28–43.

6. Пименов Р. Р. Трактовки теорем Паппа: перпендикулярность и инволютивность // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика, 2017. Вып. 2 (23). C. 29–45.

7. Погорелов А. В. Основания геометрии. 3-е изд. М.: Наука, 1968. 208 с.

8. Пименов Р. И. Единая аксиоматика пространств с максимальной группой движений // Литовский матем. сб. 1965. Т. 5. № 3. С. 457–486.

9. Скопенков М. Наглядная геометрия и топология. URL: http: // skopenkov. ru/ courses/ geometry-16. html.

Для цитирования: Пименов Р. Р. Геометрия перпендикулярного: тупые и острые углы в известных теоремах // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 56–73.

VI. Гуляева С. Т., Кабанова С. Л., Миронов В. В. К проблеме повышения эффективности образовательного процесса при использовании современных систем организации видеоконференций

Текст статьи

В работе рассмотрен актуальный вопрос повышения эффективности образовательного процесса при использовании современных систем организации видеоконференций (ВКС). Приведена диаграмма бизнес-процесса использования ВКС и рассмотрены технологии и наиболее популярные системы ВКС.

Ключевые слова: образование, видеоконференция, эффективность, бизнес-процесс, видеоконференцсвязь.

Список литературы:

1. Видеоконференцсвязь // https://trueconf.ru/: TrueConf 7.2 для Windows. URL: https://trueconf.ru/videokonferentssvyaz/070 (дата обращения: 10.07.2017).

2. Что такое VoIP? // http://aver.ru/: Всё о новинках техники. URL: http://aver.ru/all/chto-takoe-voip/ (дата обращения: 10.07.2017).

3. Оборудование для проведения видеоконференций // https://www.insotel.ru/: Инсотел. URL: http:// www.insotel.ru/article.php?id=31 (дата обращения: 10.07.2017).

4. Обзор стандартов передачи данных используемых в видеоконференцсвязи // http://www.ipvs.ru/: АйПи Видео Системс. URL: http://www.ipvs.ru/information/videoconferencing/113-protocolsvideoconferencing-data.html (дата обращения: 10.07.2017).

5. Skype // https:// ru.wikipedia.org/wiki: Википедия. URL: https://ru.wikipedia.org/wiki/Skype (дата обращения: 10.07.2017).

6. Системы ВКС Polycom // https://www.nav-it.ru/: Группа компаний Навигатор. URL: http://www.nav-it.ru/services/systemintegration/videokonferentssvyaz/sistemy-vks-polycom/ (дата обращения: 10.07.2017).

7. О компании Lifesize // http://av-pro.com.ua/: Компания АВ-ПРО. URL: http://av-pro.com.ua/taxonomy/term/15/0 (дата обращения: 10.07.2017).

8. Видеоконференцсвязь. Часть 1: Введение в предмет // http://network-lab.ru/: Сетевая академия CISCO. URL: http://network-lab.ru/videokonferentssvyaz-chast-1-vvedenie/ (дата обращения: 10.07.2017).

9. Продажа оборудования Polycom // http://www.polycom-spb.ru: Polycom. URL: http://www.polycom-spb.ru/PolycomHDX7000-1080 (дата обращения: 10.07.2017).

Для цитирования: Гуляева С. Т., Кабанова С. Л., Миронов В. В. К проблеме повышения эффективности образовательного процесса при использовании современных систем организации видеоконференций // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 74–87.

VII. Одинец В. П. Об истории некоторых математических моделей в экологии

Текст статьи

В статье кратко изложена предыстория появления математических моделей и методов в экологии. Подробнее дана история 5 математических моделей: модель, основанная на мультифрактальном анализе, модель поглощения дождём загрязнений атмосферы, модели Лотки – Вольтерры и их развитие, модель стабильности популяции на генетическом уровне.

Ключевые слова: индекс Маргалефа, оценка Хедервари, мультифрактальный анализ, модели Лотки – Вольтерры, репрессилятор.

Список литературы:

1. Абдурахманов А. И., Фирстов П. П., Широков В. А. Возможная связь вулканических извержений с цикличностью солнечной активности // Бюл. вулканол. станций. № 52 (1976). C. 3–11.

2. Багоцкий С. В., Базыкин А. Д., Монастырская Н. П. Математические модели в экологии (Библиографический указатель отечественных работ). М.: ВИНИТИ, 1981. 224 с.

3. Bo¨ckman C. Hybrid regularization method for the ill-possed inversion of multiwave length lidar data to determine aerosol size distribution // Applied Optics, 40 (2001), pp. 1329–1342.

4. Борисенков Е. П., Пасецкий В. М. Экстремальные природные явления в русских летописях XI–XVII вв. Л.: Гидрометеоиздат, 1983. 241 с.

5. Bullard F. M. Volcanoes in history, in theory, in eruption. Austin: Univ. Texas Press, 1962. 441 p.

6. Влодавец В. И. Вулканы Земли. М.: Наука, 1973. 169 с.

7. Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi // Mem. R. Accad. Naz. deiLincei, Ser. 2., 1926. Pp. 31–113.

8. Гелашвили Д. Б., Якимов В. Н., Иудин Д. И., Дмитриев А. И., Розенберг Г. С., Солнцев Л. А. Мультифрактальный анализ видовой структуры сообщества мелких млекопитающих Нижегородского Поволжья // Экология. № 6. 2008. С. 456–461.

9. Georgi I. Von einer feuerfangenden Ende aus der Revalischen Stadthalderschaft // Im: «Auswahl ¨okonomischer Abhandlungen, welche freie ¨Okonomische Geselschaft in St.-Petersburg in deutscher Sprache erhalten hat». DritterBand. St.-Petersburg: 1791. S. 330–331.

10. Глызин С. Д., Колесов А. Ю., Розов Н. Х. Существование и устойчивость релаксационного цикла и математической модели репрессилятора // Математ. заметки. Т. 101. Вып. 1, 2017. C. 58–76.

11. Гуламов М. И. Теоретико-групповой подход к исследованию взаимодействия экологических факторов // Экологическая химия. 21 (1). 2012. С. 1–9.

12. Kolmogorov A. Sulla teoria di Volterra della lutta per l’esistenza // G.Inst. Ital. Attuari, 7, № 1, 1936. Pp. 74–80.

13. Колмогоров А. Н. Качественное изучение математических моделей динамики популяций // Проблемы кибернетики. М.: Наука, 1972. Вып. 25. C. 100–106.

14. Крашенинников С. П. Описание Земли Камчатки. 1755. Т. 1; Т. 2 (Репринт. Воспроизведение. СПб. : Наука, 1994. Т. 1. 440 с.; Т. 2. 320 с.).

15. Lotka A. F ur Theorie der periodischen Reaktionen // Z. Physics. Chem., 72, (1910). S. 508–511.

16. Mandelbrot B. Fractals: Form, Chance and Dimension. SanFrancisco: W. H. Freeman and Co., 1977. 365 p.

17. Маргалеф Р. Облик биосферы (перевод с исп.). М.: Наука, 1992. 254 с.

18. Моисеев Н. Н. Экология человечества глазами математика. М.: Молодая гвардия, 1988. 255 с.

19. Никоненко В. А., Тянтова Е. Н. Модель поглощения дождём загрязняющих веществ из атмосферы // Экологическая химия. 2010. 19 (2). C. 98–104.

20. Одинец В. П. Зарисовки по истории компьютерных наук. Сыктывкар: Изд-во КГПИ, 2013. 421 с.

21. Орлов К. Г., Мингалев И. В., Мингалев В. С., Чечеткин В. М., Мингалев О. В. Численное моделирование общей циркуляции атмосферы Земли для условий зимы и лета // Труды Кольского научного центра. Гелиогеофизика. Вып. 1. 6/2015. C. 140–145.

22. Pallas R. S. Reise durch verschiedene Provinzen des Russisches Reiches. Teil 2. Buch 1. St.-Petersburg, 1773. S. 54–57.

23. Панников В. Д., Минеев В. Г. Почва, климат, удобрения и урожай. М.: Колос, 1977. 413 с.

24. Пегов С. А., Хомяков П. М. Моделирование развития экологических систем. СПб.: Наука, 1991. 218 с.

25. Петросян Л. А., Захаров В. В. Введение в математическую экологию. Л.: Изд-во ЛГУ, 1986. 222 с.

26. Пихлак А.-Т. А. Заметки по истории исследования процессов самовозгорания и проблем кислорода атмосферы в Эстонии // Экологическая химия. 2009. 18 (1). C. 31–40.

27. Ромашев Ю. А., Скоробогатов Г. А. Детерминистское и стохастическое моделирования экосистемы (жертва–хищник), химической системы (горючее–окислитель), экономической системы (ресурсы–индустрия // Экологическая химия. 2011. 20 (3). C. 129–149.

28. Трифонова Т. А., Ильина М. Е. Экологический менеджмент: практические аспекты применения. Владимир: Аркаим, 2015. 362 с.

29. Форрестер Д. Мировая динамика (перевод с англ.). М.: АСТ, 2008. 384 c.

30. Harrington E. C., Jr. The Desirability Function // Industrial Quality Control, Vol. 21, № 10, 1965. Pp. 494–498.

31. Hedervari P. On the energy and magnitude of volcanic eruption // Bul. volcanologiq., XXV, 1963. Pp. 373–379.

32. Shepherd E. S. The analysis of gases obtained from volcanoes and from rocks // J. Geol., Vol. 33, № 3, 1925.

33. Elovitz M. B., Leibler S. A synthetic oscillatory network of transcriptional regulators // Nature, 403 (2000). Pp. 335–338.

34. Ячменникова Н. Летим сквозь пепел // Российская газета 28.06.2017. № 139 (7305).

Для цитирования: Одинец В. П. Об истории некоторых математических моделей в экологии // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 88–103.

VIII. Устюгов В. А., Чуфырев А. Е. Задача о перколяции

Текст статьи

В статье дан обзор алгоритмов для решения задачи поиска стягивающего кластера на квадратной решетке. Описана методика определения порога перколяции, а также нахождения зависимости доли ячеек стягивающего кластера от общего числа занятых ячеек. Объяснено сингулярное поведение последней зависимости в окрестности критической концентрации.

Ключевые слова:перколяция, стягивающий кластер, алгоритм Хошена-Копельмана.

Списоклитературы:

1. Giordano N. J. Computational physics / N. J. Giordano, H. Nakanishi. Pearson/PrenticeHall, 2006. 544 p.

2. Гулд Х., Тобочник Я. Компьютерное моделирование в физике. М.: Мир, 1990. 400 с.

3. Тарасевич Ю. Ю. Перколяция: теория, приложения и алгоритмы: Учебное пособие. М.: Едиториал УРСС, 2002. 112 с.

Для цитирования: Устюгов В. А.,Чуфырев А. Е. Задача о перколяции // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 104–113.

IX. Вечтомов Е. М. К восьмидесятилетию Евгения Ильича Михайловского

Текст статьи

Статья посвящена видному ученому, заслуженному деятелю науки Российской Федерации, главе школы механиков Коми республики, доктору физико-математических наук, профессору Евгению Ильичу Михайловскому.

Для цитирования:Вечтомов Е. М. К восьмидесятилетию Евгения Ильича Михайловского // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 114–117.

Вестник 4 (25) 2017

Выпуск 4 (25) 2017

I. Дубатовская М. В., Примачук Л. П., Рогозин С. В. О факторизации треугольных матриц функций

Текст статьи

Статья посвящена анализу эффективного метода факторизации треугольных матриц функций произвольного порядка, обобщающего метод Г. Н.Чеботарева. Результаты проиллюстрированы примерами.

Ключевые слова: факторизация матриц-функций, треугольные матрицы, цепные дроби.

Список литературы:

1. Адуков В. М. Факторизация Винера-Хопфа мероморфных матриц-функций // Алгебра и Анализ. 1992. T. 4 (1). C. 51–69.

2. Болибрух А. А. Обратная задача о монодромии в аналитической теории дифференциальных уравнений. М.: МЦНМО, 2009.

3. Чеботарев Г. Н. Частные индексы краевой задачи Римана с треугольной матрицей второго порядка // Успехи мат. наук. 1956. T. XI (3(69)). C. 192–202.

4. Гахов Ф. Д. Краевые задачи. 3-е изд. М.: Наука, 1977. 544 с.

5. Khrapkov A. A. Wiener-Hopf method in mixed elasticity problems. Sankt Petersburg, 2001.

6. Lawrie J. B., Abrahams, I. D. A brief historical perspective of the Wiener-Hopf technique // J. Engrg. Math. 2007. Vol. 59 (4). Pp. 351–358.

7. Litvinchuk G. S., Spitkovsky I. M. Factorization of measurable matrix functions. Basel-Boston: Birkha¨user, 1987. 371 p.

8. Мусхелишвили Н. И. Сингулярные интегральные уравнения. 3-е изд. М.: Наука, 1968. 600 с.

9. Primachuk L., Rogosin S. Factorization of Triangular MatrixFunctions of an Arbitrary Order // Lobachevsky J. of Math. 2018. Vol. 39 (1). Pp. 129–137.

10. Rogosin S., Mishuris G. Constructive methods for factorization of matrix-functions // IMA J. Appl. Math. 2016. Vol. 81 (2). Pp. 365–391.

Для цитирования:Dubatovskaya M., Primachuk L., Rogosin S. Onfactorizationoftrianglematrixfunctions // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 5–14.

II. Певный А. Б., Ситник С. М. Модифицированное дискретное преобразование Фурье и его спектральные свойства

Текст статьи

Предлагается модифицированное дискретное преобразование Фурье порядка n. При n = 4m матрица этого преобразования имеет 4 собственных числа, все кратности m.

Ключевые слова: дискретное преобразование Фурье, собственные числа.

Списоклитературы:

1. Schur I. ¨Uber die Gaussschen Summen // Nach. Gessel. G¨ottingen. Math.-Phys. Klasse. 1921. Pp. 147–153.

2. Ситник С. М. Обобщённые дискретные преобразования Фурье и их спектральные свойства // Новые информационные технологии в автоматизированных системах. М.: МИЭТ, 2014.

Для цитирования:Певный А. Б., Ситник С. М. Модифицированное дискретное преобразование Фурье и его спектральные свойства // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 15–19.

III. Чередов В. Н., Куратова Л. А. Динамика сетки межмолекулярных связей и фазовые переходы в конденсированных средах

Текст статьи

Предложен новый подход к исследованию молекулярной структуры жидкой и твердой фазы вещества — модель мерцающих связей. Данный подход основывается на развитии модели тепловых колебаний атомов (молекул) вещества и их влиянии на динамику молекулярной структуры и структуру сетки межмолекулярных связей твердой и жидкой фаз вещества. Выявлена температурная зависимость динамики свойств сетки межмолекулярных связей твердой и жидкой фаз вещества, а также динамики свойств указанной сетки связей в фазовых переходах первого рода «твердое тело — жидкость» и «жидкость — газ». На основе построенной модели изучена динамика структуры H2O и ее фазовых переходов.

Ключевые слова: межмолекулярные связи, фазовые переходы, кристаллизация, структура решетки.

Список литературы:

1. Каплан И. Г. Межмолекулярные взаимодействия. Физическая интерпретация, компьютерные расчёты и модельный потенциал. М.: БИНОМ. Лаборатория знаний, 2012. 400 с.

2. Чередов В. Н. Статика и динамика дефектов в синтетических кристаллах флюорита. СПб.: Наука, 1993. 112 с.

3. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. М.: Физматлит, 2010. Ч. 1. 616 с.

4. Енохович А. С. Справочник по физике и технике. М.: Просвещение, 1989. 224 с.

5. Зацепина Г. Н. Физические свойства и структура воды. М.: МГУ, 1998. 184 с.

6. Эйзенберг Д., Кауцман В. Структура и свойства воды. М.: Директ-медиа, 2012. 284 с.

Для цитирования: Чередов В. Н., Куратова Л. А. Динамика сетки межмолекулярных связей и фазовые переходы в конденсированных средах // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 20–32.

IV. Королев И. Ф. Эффективная реализация поточного шифра CHACHA20

Текст статьи

Статья посвящена эффективной реализации алгоритма поточного шифрования ChaCha20 для архитектуры ARM. Данный алгоритм обладает возможностью параллельных вычислений. В статье описывается использование этой возможности для ускорения работы алгоритма шифрования с помощью технологии ARM NEON, векторные инструкции которой работают по принципу SIMD.

Ключевые слова: ChaCha20, ARM NEON, SIMD.

Списоклитературы:

1. ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition. 2012. 2734 p.

2. Bernstein D. J. ChaCha, a variantof Salsa20. 2008. URL: https://cr.yp.to/chacha/chacha-20080128.pdf (дата обращения: 20.05.2017)

3. Bernstein D. J. The Salsa20 family of stream ciphers. 2007. URL: https://cr.yp.to/snuffle/salsafamily-20071225.pdf (дата обращения: 20.05.2017)

4. Bernstein D. J., Schwabe P. NEON crypto. 2012. URL: https://cryptojedi.org/papers/neoncrypto-20120320.pdf (дата обращения: 20.05.2017)

5. Internet Engineering Task Force (IETF), Google, Inc. ChaCha20Poly1305 Cipher Suites for Transport Layer Security (TLS). 2016. URL: https://tools.ietf.org/html/rfc7905 (датаобращения: 20.05.2017)

6. OpenBSD: PROTOCOL.chacha20poly1305, v 1.3 2016/05/03. URL: http://bxr.su/OpenBSD/usr.bin/ssh/PROTOCOL.chacha20poly1305 (дата обращения: 20.05.2017)

7. Speeding up and strengthening HTTPS connections for Chrome on Android. URL: https://security.googleblog.com/2014/04/speeding-upand-strengthening-https.html (дата обращения: 20.05.2017)

Для цитирования: Королев И. Ф. Эффективная реализация поточного шифра CHACHA20 // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 33–43.

V. Котелина Н. О. Применение БПФ в задачах спортивного программирования

Текст статьи

В этой статье рассматривается использование БПФ для решения одной задачи спортивного программирования.

Ключевые слова: дискретное преобразование Фурье, программирование.

Список литературы:

1. Codeforces (c). Copyright 2010–2017. Михаил Мирзаянов. Соревнования по программированию 2.0. URL: http://codeforces.com. (дата обращения: 12.09.2017).

2. MAXimal. URL: http://e-maxx.ru. (дата обращения: 12.09.2017).

3. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. М.: МЦНМО, 2001. 960 с.

4. Малозёмов В. Н., Машарский С. М. Основы дискретного гармонического анализа. СПб.: Лань, 2012. 302 с.

Для цитирования:Котелина Н. О. Применение БПФ в задачах спортивного программирования // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 44–49.

VI. Макаров П. А. Методические особенности применения структурного типа данных в программах, написанных на языках Си и Си++

Текст статьи

В работе рассматриваются некоторые особенности методики преподавания языков программирования Си/Си++ студентам физико-математических специальностей вузов. Обсуждается применение структурного типа данных в программах как средство логической организации решения задачи. Описываются особенности перехода от процедурной парадигмы программирования к объектно-ориентированной.

Ключевые слова: процедурная и объектно-ориентированная парадигмы программирования, структурный тип данных, методы, конструкторы, перегрузка операций.

Список литературы:

1. Эккель Б. Философия C++. Введение в стандартный C++. 2-е изд. СПб.: Питер, 2004. 572 c.

2. Керниган Б., Ритчи Д. Язык программирования C. 2-е изд., перераб. и доп. М.: Вильямс, 2015. 289 c.

3. Столяров А. В. Введение в язык Си++ : учеб. пос. 3-е изд. М.: МАКС Пресс, 2012. 128 c.

4. Салимов Ф. B., Бухараев Н. Р. Из опыта преподавания курса «Алгоритмы и структуры данных» в Казанском федеральном университете // Казанский педагогический журнал. № 4 (99). 2013. C. 46–54.

5. Абрамян М. Э. Применение электронного задачника при проведении практикума по динамическим структурам данных // Компьютерные инструменты в образовании. № 3. 2013. C. 45–56.

Для цитирования: Макаров П. А. Методические особенности применения структурного типа данных в программах, написанных на языках Си и Си++ // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 50–58.

VII. Чиркова Л. Н. О решении оптимизационных задач линейного программирования при обучении основам системного анализа

Текст статьи

Статья посвящена вопросу решения оптимизационных задач линейного программирования при обучении основам системного анализа студентов вуза.

Ключевые слова:cистемный анализ, экономическая система, оптимизационные задачи линейного программирования.

Список литературы:

1. Вдовин В. М. Теория систем и системный анализ : учебник / В. М. Вдовин, Л. Е. Сурков, В. А. Валентинов. М.: Издательскоторговая корпорация «Дашков и К», 2016. 644 с.

2. Кремер Н. Ш., Путко Б. А., Тришин И. М., Фридман М. Н. Исследование операций в экономике : учебное пособие для вузов/ под ред. проф. Н. Ш. Кремера. М.: Юрайт; ИД «Юрайт», 2013. 438 c.

3. Берман Н. Д., Шадрина Н. И. Решение задач линейного программирования в MicrosoftExcel2010 : методические указания к выполнению лабораторных работ по информатике для обучающихся по всем программам бакалавриата и специалитета дневной формы обучения. Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2015. 27 с.

Для цитирования:Чиркова Л. Н. О решении оптимизационных задач линейного программирования при обучении основам системного анализа // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 59–67.

VIII. Попов Н. И., Габов Е. П. Евклидова и неевклидова геометрия: математический экскурс для школьников

Текст статьи

В статье описаны элементы евклидовой и неевклидовой геометрии на доступном для школьников математическом языке. Приведены примеры моделей геометрии Н. И. Лобачевского. Работа направлена на расширение научного мировоззрения и математического кругозора учащихся средних общеобразовательных учреждений.

Ключевые слова: евклидова геометрия, неевклидова геометрия, модели геометрии Лобачевского.

Список литературы:

1. Габова Е. П. Изучение творческой деятельности двух величайших математиков Евклида Александрийского и Н. И. Лобачевского // Лобачевский и XXI век : материалы IV учебно-научной студенческой конференции, посвященной году Лобачевского в Казанском федеральном университете / под ред. Л. Р. Шакировой. Казань: Изд-во Казан. ун-та, 2017. С. 50–67.

2. Галимханова З. Т., Гузялова А. Н. Элементы геометрии Н. И. Лобачевского в архитектуре А. Гауди // Лобачевский и XXI век : материалы IV учебно-научной студенческой конференции, посвященной году Лобачевского в Казанском федеральном университете / под ред. Л. Р. Шакировой. Казань: Изд-во Казан. ун-та, 2017. С. 67–82.

3. Евклид. Начала Евклида. Книги I-VI / пер. с греч. и коммент. А. Д. Мордухай-Болтовского при редакционном участии М.Я. Выгодского и И.Н. Веселовского. М.; Ленинград: Гостехиздат, 1950. 447 c.

4. Пидоу Д. Геометрия и искусство. М.: Мир, 1979. 332 с.

5. Прасолов В. В. Геометрия Лобачевского. М.: Изд-во МЦНМО, 2004. 89 с.

6. Хенсберген Г. Гауди-тореадор искусства. М.: Эксмо, 2004. 352 с.

Для цитирования: Попов Н. И., Габова Е. П. Евклидова и неевклидова геометрия: математический экскурс для школьников // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 68–74.

IX. Алексюк В. Н. Мера на булевых алгебрах

Текст статьи

Если на регулярных булевых алгебрах со счетной системой образующих имеется существенно положительная квазимера, то полные булевы алгебры с непрерывной внешней мерой нормируемы (в ZFC+CH).

Ключевые слова: булева алгебра, непрерывная внешняя мера, мера.

Список литературы:

1. Владимиров Д. А. Булевы алгебры. М.: Наука, 1969. 320 с.

2. Magaram D. An algebraic characterisation of measure algebras // Annals of Mathematics. 1947. V. 48. №1. P. 154–167.

3. Алексюк В. Н. Теорема о миноранте. Счетность проблемы Магарам // Математические заметки. 1977. Т. 21. №5. С. 597–604.

4. Владимиров Д. А. Теория булевых алгебр. СПб.: Издательство С.-Петербургского университета, 2000. 616 с.

5. Сикорский Р. Булевы алгебры. М.: Мир, 1969. 376 с.

Для цитирования:Алексюк В. Н. Мера на булевых алгебрах // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 75–77.

X. Вечтомов Е. М. Владимиру Леонидовичу Никитенкову исполнилось бы 65 лет

Текст статьи

Статья посвящена заслуженному работнику высшей школы Российской Федерации, доктору физико-математических наук, профессору Владимиру Леонидовичу Никитенкову (1952–2015).

Список литературы:

1. Персоналии. Наши юбиляры: Никитенков Владимир Леонидович (к 60-летию) // Математический вестник педвузов и университетов Волго-Вятского региона / гл. ред. Е. М. Вечтомов. 2013. Вып. 15. С. 465–466.

2. Евгений Ильич Михайловский и его Ученик Владимир Леонидович Никитенков : сборник воспоминаний и документов (аннотированный каталог личных фондов) / сост. М. И. Бурлыкина, М. А. Лодыгина. Сыктывкар: Изд-во СГУ им. Питирима Сорокина, 2017. 236 с.

3. Вечтомов Е. М. К восьмидесятилетию профессора Евгения Ильича Михайловского // Вестник Сыктывкарского университета. Серия 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). С. 116–119.

4. Математическое моделирование и информационные технологии : сборник статей Международной научной конференции (10–11 ноября 2017 г., г. Сыктывкар) / отв. ред. А. В. Ермоленко. Сыктывкар: Изд-во СГУ им. Питирима Сорокина, 2017. 156 с.

Для цитирования:Вечтомов Е. М. Владимиру Леонидовичу Никитенкову исполнилось бы 65 лет // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 4 (25). C. 78–83.

Вестник 1 (26) 2018

Выпуск 1 (26) 2018

I. Макаров П. А., Щеглов В. И. О применении операторного формализма к решению задач электродинамики бигиротропных сред

Текст статьи

Развит операторный формализм к рассмотрению электромагнитных волновых процессов в стационарных, однородных, бигиротропных средах. Выведены волновые уравнения в общем случае, а также для волн, распространяющихся параллельно и перпендикулярно оси гиротропии. Аналитически получены решенияволнового уравнения и дисперсионные соотношения для гироэлектрической и гиромагнитной волн. Указан общий ход решения для волн, распространяющихся параллельно оси гиротропии.

Ключевые слова: электродинамика, уравнения Максвелла, бигиротропная среда, распространение электромагнитных волн.

Список литературы

  1. Шавров В. Г., Щеглов В. И. Магнитостатические и электромагнитные волны в сложных структурах. М.: ФИЗМАТЛИТ, 2017.360 c.
  2. Веселаго В. Г. Электродинамика веществ с одновременно отрицательными значениями ε и µ // УФН. 1967. Т. 92. № 3. C. 517–526.
  3. Виноградов А. П. Электродинамика композитных материалов.М.: УРСС, 2001. 207 c.
  4. Щеглов В. И. Расчет динамической проницаемости среды, содержащей магнитную и электрическую компоненты // Журнал радиоэлектроники. 2001. № 7. URL:http://jre.cplire.ru/win/aug01/4/text.html (дата обращения:29.03.2018).
  5. Ерицян О. С. Оптические задачи электродинамики гиротропных сред // УФН. 1982. Т. 138. № 4. C. 645–674.
  6. Barta O., et al. Magneto-optics in bi-gyrotropic garnet waveguide //Opto-electronics review. Vol. 9.№ 3. 2001. Pp. 320–325.
  7. Bukhanko A. F., Sukstanskii A. L. Optics of a ferromagnetic csuperlattice with noncollinear orientation of equilibrium magnetization vectors in layers // Journal of Magnetism and Magnetic Materials.Vol. 250. 2002. Pp. 338–352.
  8. Dadoenkova N. N., et al. Complex waveguide based on a magnetooptic layer and a dielectric photonic crystal // Superlattices and Microstructures, vol. 100, 2016, pp. 45–56.
  9. Eliseeva S. V., Sannikov D. G., Sementsov D. I. Anisotropy, gyrotropy and dispersion properties of the periodical thin-layerstructure of magnetic-semiconductor // Journal of Magnetism and Magnetic Materials.Vol. 322. 2010. Pp. 3807–3816.
  10. Rychly J. et al. Magnonic crystals — Prospective structures forshaping spin waves in nanoscale // Low Temperature Physics. Vol. 41.№ 10. 2015. Pp. 745–759
  11. Гуревич А. Г., Мелков Г. А. Магнитные колебания и волны. М.:Наука, 1994. 464 с.
  12. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Т. VIII.Электродинамика сплошных сред. М.: ФИЗМАТЛИТ, 2005. 656 с.
  13. Greer J. B., Bertozzi A. L., Sapiro G. Fourth orderpartial differential equations on general geometries // Journal of Computational Physics. Vol. 216. № 1. 2006. Pp. 216–246.
  14. Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. М.: УРСС, 2002. 320 c.
  15. Кузнецов Е. А., Шапиро Д. А. Методы математической физики: курс лекций. Новосибирск: Новосибирский государственный университет, 2011. Ч. I. 131 с.

Для цитирования: Макаров П. А., Щеглов В. И. О применении операторного формализма к решению задач электродинамики бигиротропных сред // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 3–16.

II. Петраков А. П., Чередов В. Н. Вклад «горячих» фононов во внутреннюю энергию твердых тел

Текст статьи

Построена смешанная термодинамическая модель твердого тела, включающая интерпретацию энергии акустических ветвей колебаний на основе модели Дебая, а ветвей оптических колебаний и либрационных вращений на основе модели Энштейна. В рамках развития теории тепловых колебаний (фононов) решетки твердых тел исследован вклад «горячих» фононов как гармонических осцилляторов с модами тепловых колебаний со значениями индексов выше заданного во внутреннюю энергию твердых тел.        Изучены зависимости вклада во внутреннюю энергию молекулы, обусловленного акустическими и оптическими тепловыми колебаниями с модами выше предельной. Получены кривые доли внутренней энергии твердых тел с решеткой, возбужденной «горячими» фононами, в зависимости от уровня предельной моды осциллятора для кристаллов льда

Ключевые слова: тепловые колебания, фононы, внутренняя энергия, кристаллическая решетка, твердое тело.

Список литературы

  1. Чередов В. Н., Куратова Л. А. Динамика сетки межмолекулярных связей и фазовые переходы в конденсированных средах //Вестник Сыктывкарского университета. Серия 1: Математика.Механика.Информатика. 2017. № 4 (25). С. 20–32.
  2. Родникова М. Н., Чумаевский Н. А. О пространственной сетке водородных связей в жидкостях и растворах // Журнал структурной химии. 2006. Т. 47. С. S154–S166.
  3. Маленков Г. Г. Структура и динамика жидкой воды // Журнал структурной химии. 2006. Т. 47. С. S5–S35.
  4. Бушуев Ю. Г. Свойства сетки водородных связей воды // Известия РАН. Серияхимическая. 1997. № 5. С. 928–931.
  5. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. М.:Физматлит, 2010. Ч. 1. 616 с.
  6. Wang Kuo-Ting, Brewster M.Q. An Intermolecular Vibration Model for Lattice Ice //International Journal of Thermodynamics. 2010. V. 13. № 2. Pp. 51–57.
  7. Эйзенберг Д., Кауцман В. Структура и свойства воды. М.:Директ-медиа, 2012. 284 с.
  8. Енохович А. С. Справочник по физике и технике. М.:Просвещение, 1989. 224 с.
  9. Зацепина Г. Н. Физические свойства и структура воды. М.: МГУ, 1998. 184 с.
  10. Bertie J. E., Whalley E. Optical Spectra of Orientationally Disordered Crystals. II. Infrared Spectrum of Ice Ih and Ice Ic from 360 to 50 cm−1 //The Journal of Chemical Physics. 1967. V. 46, № 4. Pp. 1271–1281.
  11. Wang Kuo-Ting, Brewster M. Q. An Intermolecular Vibration Model for Lattice Ice //International Journal of Thermodynamics. 2010. V. 13. № 2. Pp. 51–57.

Для цитирования: Петраков А. П., Чередов В. Н. Вклад «горячих» фононов во внутреннюю энергию твердых тел // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 17–28.

III. Тарасов В. Н.  Об упругой линии сжимаемого продольной силой стержня, находящегося между двумя жесткими стенками

Текст статьи

Рассматривается задача определения упругой линии сжимаемого продольной силой стержня, расположенного между двумя жесткими стенками. Изучается зависимость упругой линии от граничных условий.

Ключевые слова: упругая линия, критическая сила, граничные условия, устойчивость, уравнение Эйлера.

Список литературы

  1. Михайловский Е. И., Тарасов В. Н., Холмогоров Д. В. Закритическое поведение продольно сжатого стержня с жесткими ограничениями на прогиб // ПММ. 1985. Т. 49. Вып. 1. C. 156–160.
  2. Николаи Е. Л. Труды по механике. М.: Изд-во технико-теоретической литературы, 1955. 584 с.
  3. Тарасов В. Н. Об устойчивости упругих систем при односторонних ограничениях на перемещения // Труды института математики и механики / Российская академия наук. Уральское отделение. 2005. Т. 11. № 1. С. 177–188.
  4. Феодосьев В. И. Избранные задачи и вопросы по сопротивлению материалов. М.:Наука, 1967. 376 с.

Для цитирования: Тарасов В. Н. Об упругой линии сжимаемого продольной силой стержня находящегося между двумя жесткими стенками // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 29–46.

IV. Рычков С. Л. Вычисление главных значений некоторых интегралов сопряжения

Текст статьи

Рассматривается метод вычисления главных значений интегралов вида При помощи интегралов такого типа может быть выражена диэлектрическая проницаемость неравновесной плазмы с квазистепенной функцией распределения электронов по импульсам. Представленный метод отличен от известных ранее и приводит к более удобным для приложений результатам. Интегралы выражаются через гипергеометрические функции Гаусса для значений параметров z> 0 и ν> 5/2. Получены простые асимптотические выражения для значений параметра z≫ 1. Даны графические представления результатов.

Ключевые слова: главное значение интеграла, гипергеометрические функции, неравновесная плазма, квази степенная функция распределения, каппа–распределение.

Список литературы

  1. Pierrard V., Lazar M. Kappa distributions: theory and applications in space plasmas // Solar Physics. 2010. V. 267. Pp. 153–174.
  2. PodestaJ. J. Plasmadispersion function for the kappadistribution // ReportNASA/CR-2004-212770. https://ntrs.nasa.gov/archive/nasa/casi/ntrs.gov/20040161173.pdf (дата обращения: 26.03.2018).
  3. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Гипергеометрическая функция. Функции Лежандра. М.: Наука, 1965. 296 с.

Для цитирования: Чернов В. Г. Принятие решений в условиях неопределенности при нечетких лингвистических оценках ситуации //

Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2019. Вып. 3 (32). C. 31–45.

V. Котелина Н. О. Двумерный тернарный поиск и его применение в задачах спортивного программирования

Текст статьи

В этой статье рассматривается использование метода тернарного поиска для решения одной задачи спортивного программирования.Ключевые слова: двумерный тернарный поиск, спортивное программирование.

Список литературы

  1. Дистанционная подготовка по информатике [Электронный ресурс]. URL: http://informatics.mccme.ru (дата обращения: 29.10.2017).
  2. MAXimal. Сайт М. Иванова [Электронный ресурс]. URL: http://e-maxx.ru (дата обращения: 12.09.2017).
  3. Кнут Д. Искусство программирования. Т. 3. Сортировка и поиск. М.: Вильямс, 2007. Т. 3. 832 с.
  4. Конспекты студентов кафедры компьютерных технологий Университета ИТМО. URL: http://neerc.ifmo.ru/wiki (дата обращения: 12.09.2017).
  5. Мэтьюз Дж. Г., Финк К. Д. Численные методы. Использование MATLAB. 3-е изд. СПб.: Вильямс, 2001. 716 c.
  6. Олимпиады по информатике [Электронный ресурс]. URL: https://neerc.ifmo.ru/school (дата обращения: 12.09.2017).  422–437. DOI: 10.20537/vm190311.

Для цитирования: Котелина Н. О. Двумерный тернарный поиск и его применение в задачах спортивного программирования // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 58–63.

VI. Мельников В. А. Применение генетических алгоритмов для отыскания оптимальной последовательности раскроя

Текст статьи

Статья описывает применение генетических алгоритмов для отыскания оптимальной последовательности раскроя фигур общего вида в двумерном пространстве. Также приводится модификация генетических алгоритмов для возможности увеличения количества генов в индивиде.

Ключевые слова: генетические алгоритмы, оптимизация, геном, индивиды.

Список литературы

  1. MacLeod C. An Introduction to Practical Neural Networks and Genetic Algorithms For Engineers and Scientists. P. 85.
  2. He Y., Liu H. Algorithm for 2D irregular-shaped nesting problem based on the NFP algorithm and lowest gravity-center principle // Journal of Zhejiang University. 2006. № 7. Рр. 571–574.
  3. Панченко Т. В. Генетические алгоритмы / под ред. Ю. Ю. Тарасевича. Астрахань: Издательский дом «Астраханский университет», 2007. С. 16.
  4. Кудрявцев Л. Д. Математический анализ. 2-е изд. М.: Высшая школа, 1973. Т. 1. 687 с.
  5. Coordinate Systems, Transformations and Units [Electronic resource] / W3C. 6 мая 2017. URL: https://www.w3.org/TR/SVG/coords.html (дата обращения: 25.12.2017).
  6. Мельников В. А. Методы представления фигур общего вида для задачи двумерного раскроя // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 11—24.

Для цитирования: Мельников В. А. Применение генетических алгоритмов для отыскания оптимальной последовательности раскроя // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 64–72.

VII. Котелина Н. О., Попова Н. К. Подготовка интернет-тура чемпионата по программированию на yandex.contest

Текст статьи

В статье обсуждается интернет-тур открытого чемпионата Сыктывкарского государственного университета им. Питирима Сорокина по программированию, проведенный в рамках проекта «Развитие сетевого взаимодействия в области математики, физики, информатики и робототехники между образовательными организациями финно-угорских республик Российской Федерации».

Ключевые слова: интернет-тур, Яндекс.Контест, спортивное программирование.

Список литературы

  1. Архив материалов олимпиад / Олимпиады по информатике [Электронный ресурс]. URL: https://neerc.ifmo.ru/school/archive/index.html (дата обращения: 19.02.2018).
  2. Официальный сайт Всероссийской командной олимпиады школьников по программированию / Олимпиады по информатике [Электронный ресурс]. URL: https://neerc.ifmo.ru/school/russiateam/index.html (дата обращения: 19.02.2018).
  3. Правила соревнований / Соревнования по программированию 2.0 [Электронный ресурс]. URL: http://codeforces.com/blog/entry/4088?locale=ru (дата обращения: 19.02.2018).
  4. Соревнования по программированию 2.0 [Электронный ресурс]. URL: http://codeforces.com (дата обращения: 19.02.2018).
  5. Таблица результатов интернет-тура открытого чемпионата Сыктывкарского государственного университета им. Питирима Сорокина по программированию / Яндекс.Контест [Электронный ресурс].URL: https://contest.yandex.ru/contest/7113/standings/ (дата обращения: 19.02.2018).
  6. TimusOnlineJudge / Архив задач с проверяющей системой [Электронный ресурс]. URL: http://acm.timus.ru/ (датаобращения: 19.02.2018).

Для цитирования: Котелина Н. О., Попова Н. К. Подготовка интернет-тура чемпионата по программированию на Yandex.Contest // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 73–79.

VIII. Одинец В. П. Иммиграция в ссср в 1929–1936 гг.: профили математиков. ч. 1

Текст статьи

Анализируется жизнь и творчество математиков, вынужденных покинуть Германию по разным причинам: представителя второго поколения математиков семьи Нётер — Фрица Нётера из Эрлангена, уроженца Лодзи Германа (Хаима) Мюнтца, и Стефана Бергмана, уроженца г. Ченстохова, выбравших в качестве страны эмиграции СССР

Ключевые слова: краевые задачи, сингулярные интегральные уравнения, функции Бесселя, Орловский централ, Фриц Нётер, теорема Мюнтца, Герман Мюнтц, ядро функции, Стефан Бергман.

Список литературы

  1. Архив Санкт-Петербургского государственного университета, Дело 7240.14 № 191. (Приказ № 11 от 14/I–1932. О прикреплении аспирантов).
  2. Архив Санкт-Петербургского государственного университета, Дело 7240.14 № 191. (Приказ № 352а от 20/X–1932).
  3. Bergmann S. Uberdie Kernfunktioneines Bereichs und ihrVerhalten am Rande. Teil 1 // J. furreine und angewandte Math. Bd. 169. Heft 1. 1932. S. 1–42.
  4. Bergmann S. Uberdie Kernfunktioneines Bereichs und ihrVerhalten am Rande. Teil 2 // J. furreine und angewandte Math. Bd. 172. Heft 2. 1934. S. 89–128.
  5. Bergmann S. ZurTheorie von pseudokon form enAbbildungen // Матем. сборник. T. 1 (43). № 1. 1936. C. 79–96.
  6. Бергман С. Б. О функциях, удовлетворяющих линейным дифференциальным уравнениям в частных производных // Доклады АН СССР. T. 15. № 5. 1937. C. 227–230.
  7. Bergmann S. ZurTheorie der linearen Integral — und Funktional gleichungenim complex en Gebiet // Известия НИИММТГУ. Томск. T. 1. Вып. 3. 1937. C. 242–257.
  8. Bergmann S. The Kernel Function and Conformal Mapping. — Cambridge (Massachusetts): Amer. Math. Society, 1950. 161 p.
  9. Bergman S., Schiffer M. M. Kernel functions and elliptic differential equations in mathematical physics. New York: Academic Press, 1953. 432 p.
  10. Bergmann S. Integral operators in the theory of linear partial differential equations. Berlin-New York: Springer, 1961, 2nded., 1969. (Бергман С. Интегральные операторы в теории линейных дифференциальных уравнений с частными производными / пер. c англ. Л. А. Маркушевича.М.:Мир, 1964. 303 с.)
  11. Brewer J. W., Smith M. K. (eds.) Emmy Noether: a tribute to her life and work. New York: Marcel Dekker, Inc., 1981. 237 p.
  12. Дель О. А. Немецкие эмигранты в СССР в 1930-е годы :автореф. дис. канд. истор. наук. М.: Рос.акад. гос. службы, 1995. 22 с.
  13. Журавлёв С. В., Тяжельникова В. С. Иностранная колония в Советской России в 1920-1930-е годы (Постановка проблемы и методы исследования) // Отечественная история. 1994. № 1. C. 179–189.
  14. Ляпунов А. М. Общая задача об устойчивости движения / под ред. Г. М. Мюнтца. М.; Л.: ОНТИ, 1935. 386 с.
  15. Математика в СССР за сорок лет. 1917–1957. Т. 2. Библиография. М.: Гос. изд-во физ.-мат. лит., 1959. 819 с.
  16. Muntz Ch. Zum Randwertproblem der partiellen Differentialgleichung der Minimalflachen // J. fur Reineund Angew. Math. 139. 1911. S. 52–79.
  17. Muntz Ch. Uber den Approximationssatz von Weierstrass / H. A. Schwarz–Festschrift. Berlin: 1914. S. 303–312.
  18. Muntz Ch. Die Losung des Plateauschen Problems uberkonvexen Bereichen // Math. Ann., 94. No. 1–2. 1925. S. 53–96.
  19. Gottfried Noether, 76: Educator in Statistics // New York Times. August 27, 1991. P. 22. (Obituary).
  20. Нётер Ф. О рекуррентных функциях Бесселя и Эрмита // Известия НИИММ ТГУ. Томск: 1935. T. 1. Вып. 2. C. 121–125.
  21. Noether Fr. Asymptotische Darstellungen und Geometrische Optik // Известия НИИММ ТГУ. Томск: 1937. T. 1. Вып. 3. C. 175–189.
  22. NoetherFr. ZurKinematik des starrenKorpers in der Relativtheorie // Annalen der Physik. 336 (5). 1910. S. 914–944.
  23. Noether Fr. Bemerkunguber die LosungszahlzueinanderadjungiertenRandwertaufgabenbeilinearenDifferentialgleichungen // Sitzungsberichte der Heidelberger Akad. der Wissenschaft. Math. Nat. Klasse. 1920, I. Abhandlung. S. 37–52.
  24. Noether Fr. Ubereine Klassesingularer Integralgleichungen // Math. Ann. Bd. 82. 1921. S. 42–63.
  25. Одинец В. П. Арнольд Вальфиш — жизнь вопреки стереотипам (к 125-летию со дня рождения) // Математика в высшем образовании. 14. 2016. C. 105–112.
  26. Ortiz E. L., Pinkus A. Herman Muntz: A Mathematician’s Odyssey //Mathem. Intellig. Berlin. 27. 2005. S. 22–30.
  27. Segal, Sanford L. Mathematicians under the Nazis. Princeton: Princeton University Press, 2003. 536 p.
  28. Siegmund-Schulze R. Mathematiker auf der Fluchtvor Hitler.- Wiesbaden: Vieweg Verlag, 1998. 324 s.
  29. Труды Второго Всесоюзного математического съезда. Ленинград. 24-30 июня 1934 г. Т. 1. Пленарные и обзорные доклады. М.; Л.: Изд-во АН СССР, 1935. 371 с.

Для цитирования: Одинец В. П. Иммиграция в СССР в 1929– 1936 гг.: профили математиков. Ч. 1 // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 80–96.

IX. Калинин C. И., Леонтьева Н. В. (1/2; 1)-выпуклые функции. ч. i

Текст статьи

В работе рассматривается класс (1/2 ; 1)-выпуклых функций. Авторы приводят геометрическую характеризацию таких функций, выводят достаточные условия принадлежности функции обсуждаемому классу в терминах производных

Ключевые слова:(1/2 ; 1)-выпуклая функция, (1/2 ; 1)-вогнутая функция,1/2 -параболическая дуг

Список литературы

  1. Guan Kaizhong. GA-convexity and its applications // Anal. Math. 2013. 39. № 3. Pp. 189–208.
  2. Xiao-Ming Zhang, Yu-Ming Chu, and Xiao-Hui Zhang. The Hermite-Hadamard type inequality of GA-convex functions and its application // J. of Inequal. andApplics. Vol. 2010. Article ID 507560, 11 pages, doi:10.1155/2010/507560.
  3. Калинин С. И. (α; β)-выпуклые функции, их свойства и некоторые применения // Уфимская международная математическая конференция :cборник тезисов / отв. ред. Р. Н. Гарифуллин. Уфа: РИЦ БашГУ, 2016. С. 75–76.

Для цитирования: КалининC. И., Леонтьева Н. В. (1/2; 1)- выпуклые функции. Ч. I // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 97–104.

Вестник 3 (28) 2018

Выпуск 3 (28) 2018

I. Котелина Н. О., Попова Н. К., Юркина М. Н.    Об открытом чемпионате сгу по программированию

Текст статьи

Статья посвящена юбилейному XX Открытому чемпионату Сыктывкарского государственного университета по программированию. Рассказывается об опыте проведения мероприятия, а также о лицах, внесших значительный вклад в олимпиадное движение.

Ключевые слова: спортивное программирование, ACM, ICPC.

Список литературы

  1. Котелина Н. О., Попова Н. К. Подготовка интернет-тура чемпионата по программированию на Yandex.Contest // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 1 (26). C. 73–79.
  2. Комиинформ. https://komiinform.ru. Первый городской открытый чемпионат по программированию прошел в Сыктывкаре в выходные. URL: https://komiinform.ru/news/4351 (дата обращения: 12.12.2018).
  3. Кирюхин В. М. Методика проведения и подготовки к участию в олимпиадах по информатике. Всероссийская олимпиада школьников. М.: БИНОМ. Лаборатория знаний, 2011. 271 с.

Для цитирования: Котелина Н. О., Попова Н. К., Юркина М. Н. Об открытом чемпионате СГУ по программированию // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 3 (28). C. 3–18.

II. Макаров П. А. О применении языка векторной графики asymptote для иллюстрации учебно-методических и научных работ физико математической направленности

Текст статьи

Исследована возможность применения языка векторной графики Asymptote для иллюстрации физико-математических учебно-методических и научных работ. Разработан ряд изображений, иллюстрирующих решение задач из разных областей физики и математики. Показано, что язык Asymptote обладает удобным высокоуровневым синтаксисом и достаточно разработанной объектно-ориентированной архитектурой.

Ключевые слова: векторная графика, Asymptote, язык программирования высокого уровня.

Список литературы

  1. Lamport L. LATEX: a document preparation system. 2 ed., AddisonWesley, 1994. 291 p.
  2. Львовский С. М. Набор и верстка в системе LATEX. 3-е изд., испр. и доп. М.: МЦНМО, 2003. 448 с.
  3. Котельников И. А., Чеботаев П. З. LATEX 2ε по-русски. 3-е изд., перераб. и доп. Новосибирск: Сибирский хронограф, 2004. 496 с.
  4. Знаменская О. В., Знаменский С. В., Лейнартас Д. Е., Трутнев В. М. Математическая типография : курс лекций. Красноярск: Изд-во СФУ, 2008. 421 с.
  5. Кнут Д. Э. Все про TEX. М.: Изд. дом «Вильямс», 2003. 560 с.
  6. Hammerlindl A., Bowman J., Prince T. Asymptote: the Vector Graphics Language, 2016. 189 p.
  7. Крячков Ю. Г. Евклидова геометрия на языке векторной графики ASYMPTOTE. Волгоград: Изд-во ВГСПУ. 2015. 88 с.
  8. Goossens M., Rahtz S., Mittelbach F. The LATEX graphics companion: illustrating documents with TEX and PostScript. AddisonWesley, 1997. 299 p.
  9. Гуссенс М., Ратц С., Миттельбах Ф. Путеводитель по пакету LATEX и его графическим расширениям. Иллюстрирование документов при помощи TEX’а и PostScript’а. М.: Мир: Бином Л3, 2002. 621 с.
  10. Кирютенко Ю. А. TikZ&PGF. Создание графики в LATEX2εдокументах. Ростов н/Д, 2014. 277 c.
  11. Tantau T. The TikZand PGF Packages. Manual for version 2.10. Institutf ur Theoretische Informatik Universit¨atzu L¨ubeck, 2010. 880 p.
  12. Taft E., Chernicoff S., Rose C. PostScript language reference manual. 3 ed. Adobe Systems Incorporated, 1999. 912 p.
  13. Reid G. C. Thinking in PostScript. Addison-Wesley Publishing Company, 1990. 239 p.
  14. PostScript language. Tutorial and cookbook. Addison-Wesley Publishing Compa
  15. ny, 1985. 247 p.
  16. Casselman B. Mathematical illustrations: a manual of geometry and PostScript. Cambridge University Press, 2004. 264 p.
  17. Крячков Ю. Г. Асимптота для начинающих. Создание рисунков на языке векторной графики Asymptote. Волгоград: Изд-во ВГСПУ, 2015. 131 с.
  18. Хобби Дж. METAPOST. Руководство пользователя / перевод с англ. В. Лидского. 2008. 106 с. URL: http://mirrors.ibiblio.org/CTAN/info/metapost/doc/russian/mpmanru/mpman-ru.pdf (дата обращения: 20.12.2018).
  19. Балдин Е. М. Создание иллюстраций в METAPOST // LinuxFormat, № 6–10, 2006.
  20. Кнут Д. Э. Все про METAFONT. М.: Вильямс, 2003. 376 с.
  21. Волченко Ю. М. Научная графика на языке Asymptote. 2018. 220 с. URL: http://www.math.volchenko.com/AsyMan.pdf (дата обращения: 20.12.2018).
  22. Guibe O., Ivaldi P. geometry.asy. Euclidean geometry with asymptote. 2011. 95 p.
  23. Беляев Ю. Н. Векторный и тензорный анализ. Сыктывкар: ИздвоСыктГУ, 2010. 298 с.
  24. Кабардин О. Ф. Транзисторная электроника. Спецпрактикум. М.:Просвещение, 1972. 207 с.
  25. Жеребцов И. П. Основы электроники. 5-е изд., перераб. и доп. Л.: Энергоатомиздат, 1989. 352 с.

Для  цитирования: Макаров П. А. О применении языка векторной графики Asymptote для иллюстрации учебно-методических и научных работ физико-математической направленности // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 3 (28). C. 19–37.

III. Устюгов В. А. Очереди на микроконтроллерах

Текст статьи

В статье обоснована необходимость изучения алгоритмов и структур данных разработчикам программного обеспечения для встраиваемых систем. Рассмотрены преимущества, получаемые при рациональной организации программного кода. Описан вариант реализации простой структуры данных — очереди.

Ключевые слова: микроконтроллер, встраиваемая система, структуры данных, очередь.

Список литературы

  1. Поликарпова Н., Шалыто А. Автоматное программирование. СПб.:Питер, 2011. 176 c.
  2. Мортон Дж. Микроконтроллеры AVR. Вводный курс. М.:Додэка, 2010. 271 c.
  3. Шпак Ю. Программирование на языке С для AVR и PIC микроконтроллеров. СПб.: КОРОНА-ВЕК, 2011. 546 c.

Для цитирования: Устюгов В. А. Очереди на микроконтроллерах // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 3 (28). C. 38–46.

IV. Громов Н. А., Костяков И. В., Куратов В. В. Комплексный момент, геометрия минковского и распространение света в метаматериалах

Текст статьи

Обсуждается эквивалентность классических уравнений движения частицы на евклидовой плоскости с мнимым моментом и на псевдоевклидовой плоскости с вещественным моментом. Аналогичная эквивалентность сохраняется и в квантовом случае для уравнений Шредингера на евклидовой плоскости и плоскости Минковского. Предложенанзац решения уравнений Максвелла, при котором распространение электромагнитных волн в метаматериалах с анизотропными диэлектрическими проницаемостями разного знака описывается уравнением Шредингера для свободной частицы на плоскости Минковского.

Ключевые слова: геометрия Минковского, уравнение Шредингера, метаматериалы.

Список литературы

  1. Ремнев М. А., Климов В. В. Метаповерхности: новый взгляд на уравнения Максвелла и новые методы управления светом // УФН. 2018. Т. 188. №2. С. 169–205.
  2. Smolyaninov I. I. Hyperbolic metamaterials. ArXiv:1510.07137[physics. optics].
  3. Катанаев М. О. Геометрические методы в математической физике. ArXiv:1311.0733[math-ph].
  4. Шабад А. Е. Сингулярный центр как негравитационная черная дыра // ТМФ. 2014. Т. 181. №3. С. 603–613.
  5. Переломов А. М., Попов В. С. «Падение на центр» в квантовой механике // ТМФ. 1970. Т. 4. №1. С. 48–65.
  6. Gitman D. M., Tyutin I. V., Voronov B. L. Self-Adjoint Extensions in Quantum Mechanics: General Theory and Applications to Schr¨odinger and Dirac Equations with Singular Potentials // Progress in Mathematical Physics. 2012. V. 62, Birkh¨auser, New York, 2012. 511 p. In: Progress in Mathematical Physics, vol. 62. Birkh¨auser: New York, 2012. 511 p.
  7. Case K. M. Singular potentials // Phys. Rev. 1950. Vol. 80. Pp. 797–806.
  8. Незнамов В. П., Сафронов И. И. Падение частиц на центр. Гипотеза Ландау – Лифшица и численные расчеты // Вопросы атомной науки и техники: теоретическая и прикладная физика. 2016. №4. C. 3–8.
  9. Громов Н. А., Куратов В. В. Квантовая частица на плоскости Минковского // Известия Коми НЦ УрО РАН. Сыктывкар, 2018. Bып. 3(35). C. 5–7.

Для цитирования: Громов Н. А., Костяков И. В., Куратов В. В. Комплексный момент, геометрия Mинковского и распространение света в метаматериалах // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 3 (28). C. 47–55.

V. Ефимов Д. Б. Гафниан тёплицевых матриц специального вида, совершенные паросочетания и полиномы бесселя

Текст статьи

Список литературы

  1. Caianiello E. R. On quantum field theory — I: Explicit solution of Dyson’s equation in electrodynamics without use of Feynman graphs // IL Nuovo Cimento. 1953. V. 10 (12). Pp. 1634–1652.
  2. BjorklundA., GuptB., QuesadaN. Afasterh afnian formula for complex matricesan ditsbenchmarkin gonthe Titan super computer // arXiv:1805.12498v2 [cs.DS] 25 Sep 2018.
  3. Вялый М. Н. Пфаффианы, или Искусство расставлять знаки // Математическое просвещение. 2005. Вып. 9. С. 129–142.
  4. Schwarz M. Efficiently computing the permanent and Hafnian of some banded Toeplitz matrices // Linear Algebra and its Applications. 2009. V. 430. Pp. 1364–1374.
  5. Efimov D.B. The hafnian and a commutative analogue of the Grassmann algebra // Electronic Journal of Linear Algebra. 2018. V. 34. Pp. 54–60.
  6. Sloane N. J. A., editor The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.
  7. Krall H. L., Frink O. A new class of orthogonal polynomials: The Bessel polynomials // Transactions of the American Mathematical Society. 1949. V. 65. Pp. 100–115.
  8. Chatterjea S. K. On the Bessel polynomials // Rendicontidel Seminario Matematicodella Universit`a di Padova. 1962. V. 32. Pp. 295–303.

Для цитирования: Ефимов Д. Б. Гафниантёплицевых матриц специального вида, совершенные паросочетания и полиномы Бесселя // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 3 (28). C. 56–64.

VI. О книге, подписанной Карлом Вейерштрассом, из библиотечного фонда спбгу

Текст статьи

В статье излагается несколько возможных версий, как учебник геометрии немецкого математика Пауля фон Цеха, подписанный рукой Карла Вейерштрасса, мог попасть в библиотечные фонды СПбГУ. Эта книга, по всей видимости, из личной библиотеки ученого. В эту интригующую историю непосредственно вовлечены несколько известных в науке лиц, среди них Вера Шифф и Софья Ковалевская и Магнус Миттаг-Леффлер.

Ключевые слова: Карл Вейерштрасс, Вера Иосифовна Шифф, Софья Ковалевская, М.Г. Миттаг-Леффлер

Списоклитературы

  1. Gallica. URL: http://gallica.bnf.fr (дата обращения: 05.10.2018).
  2. Поисково-исторический форум. URL: http://smolbattle.ru Смоленские дворяне Шифф из Бельского уезда. URL: http://smolbattle.ru/threads/Смоленские-дворяне-Шифф-изБельского-уезда.44170/ (дата обращения: 05.10.2018).
  3. Вахромеева О. Б. Духовное пространство университета: Высшие женские (Бестужевские) курсы. 1878–1918 гг : исследования и материалы. СПб.:Диада-СПб, 2003. 252 с.
  4. Депман И. Я. С.-Петербургское математическое общество // Историко-мат. исследование. М., 1960. Вып. 13. С. 11–106.
  5. Протоколы С.-Петербургского математического общества. СПб., 1899. 132 с.
  6. Брокгауз Ф. А., Ефрон И. А. Энциклопедический словарь Брокгауза и Ефрона. М.:РиполКлассик, 2013. 524 с.
  7. Библиотека Бестужевских курсов: Историческая хроника в свидетельствах и документах / сост. А. В. Востриков. СПб.: Изд-во С.-Петерб. ун-та, 2009. 138 с.
  8. Распоряжение Правительства Санкт-Петербурга от 11.07.2005 88/1-рп «Об утверждении перечня мест захоронений на кладбищах Санкт-Петербурга известных граждан, внесших значительный вклад в историю России и Санкт-Петербурга».
  9. Галанова З. С., Репникова Н. М. Вера Шифф — профессор математики бестужевских курсов // Труды XIII Международных Колмогоровских чтений : сборник статей. Ярославль: РИО ЯГПУ, 2015. Т. 782. C. 258–263.
  10. Кочина П. Я. Софья Васильевна Ковалевская. М.:Наука, 1981, 312 с.
  11. Ушакова В. Г. Женщины в Санкт-Петербургском государственном универcитете: историко-социологический аспект // Женщина в российском обществе. 1, 1996. C. 57–59.

Для цитирования: Кальницкий В. C., Матвеева И. А. О книге, подписанной Карлом Вейерштрассом, из библиотечного фонда СПбГУ // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 3 (28). C. 65–75.

VII. Одинец В. П. Иммиграция в ссср: профили математиков. ч. 2

Текст статьи

Представлены жизнь и творчество трёх математиков, приехавших из Германии в СССР в двадцатые годы по идеологическим мотивам: единственной женщины-математика Стефании Бауер (Сцилард) (1898–1938), родившейся г. Дьёр (Gyor), и Целестина Бурстина (1888–1938), родившегося в Тарнополе (оба города в Австро-Венгерской Империи), и Якова Громмера (1881–1933) , родившегося в Брест — Литовске — Российская империя.

Ключевые слова: дифференциальный инвариант Шварца, двойное отношение, Стефания Бауэр (Сцилард), римановы пространства (проблемы вложения и погружения), уравнения Пфаффа, изгибание гиперповерхностей, Целестин Бурстин, трансцендентные функции, общая теория относительности, классы комплексных чисел, Яков Громмер, Альберт Эйнштейн.

Список литературы

  1. Бауэр М. Э. Воспоминания обыкновенного человека. СПб.: АССПИН Петергоф, 2003. 87 с.
  2. Bauer S. Uber die Schwazsche Diffferentialinvariante // Математ. cборник. T. 41. №1. 1934. С. 104–106.
  3. Библиография изданий Академии наук Белорусской ССР. Книги и статьи за 1929–1939 гг. Минск: Изд-воАкад. наук БССР, 1961. 134 с.
  4. Burstin C. Beitragezum Problem von Pfaff und zur Theorie der Pfaffschen Aggregate. I. Beitrag // Матем. сборник. Т. 37, № 1–2. 1930. C. 13–22.
  5. Бурстын Ц. Матэматычныяпрацы. Мiнск: Фiзiка-матэматычныин-т Беларускай Акадэмiiнавук, 1932. 76 с.
  6. Бурстын Ц. Л. Курс дыфэрэнцыяльнайгеа мэтрыi. Менск: Дзярж.выдав. Беларуси. Вучпэдсэктар, 1933. 338 с.
  7. Бурстын Ц. Л. Физiчныя метады матэматыкi. Мiнск: Фiзiкатэхнiчны ин-т БеларускайАкадэмiiнавук, 1933. 34 с.
  8. Grommer J. Ganzetranszendente Funkti on enmitlauterreel en Nulstelen // J. fur reineundangew. Math., Bd. 144. 1914. S. 114–165.
  9. Grommer J. Betragzum Energiesatz in der allgemein en Relativit¨ atstheorie // Sitzungberichte der Prussschen Akademie der Wissenschaft, Kl. 1919. S. 860–862.
  10. Grommer J., Einstein A. Allgemeine Relativit¨atstheorie und Bewegungsgezetz // Sitzungberichte der Prussschen Akademie der Wissenschaft, Kl. 1927. S. 2–13. (Эйнштейн А. Собрание научных трудов. Т. II. Работы по теории относительности 1921–1955. М: Наука, 1966. 686 с. С. 198–210.).
  11. Grommer J. Elementare Betrachtungen ¨uberBildungen von komplexen Zahlen und ihreDeutungen // Запiскi Белорускай Акадэмiiнавук. Кн. 5. 1936. C. 59–63.
  12. Elbert A., Garay G. M.  Differential equations, Hungary, the extended first haf of the 20th century. pp. 245-294 // in: A panorama of Hungarian Mathematics in Twentieth Century. I. (ed. J. Horvath) — Berlin–NewYork: Springer Science & Business Media, J´anosBolyai Math. Soc. 14. 2010. 639 p.
  13. Иоффе А. Ф. Встречи с физиками. Мои воспоминания о зарубежных физиках. Л.:Наука, 1983. 262 с.
  14. Математика в СССР за сорок лет 1917–1957. Том второй. Библиография. М.: Физматлит, 1959. 819 с.
  15. Luca F., Odyniec W. P. The characterization of Van Kampen-Flores complexes by means of system of Diophantine equations // Вестник Сыктывкарского университета. Сер. 1. Вып. 5. 2003. C. 5–10.
  16. Первая международная конференция по тензорной дифференциальной геометрии и её приложениям (Москва, 17/V–23/V, 1934). М.: МГУ им. М. Н. Покровского, 1934. 7 с.
  17. Труды Первого Всесоюзного съезда математиков (Харьков, 1930). М.; Л.: ОНТИ НКТП СССР, 1936. 376 с.
  18. Труды Второго Всесоюзного математического съезда (Ленинград, 24–30 июня 1934 г.) Т. 1. М.; Л.: Изд-во АН СССР, 1935. 371 с.
  19. Zusmanovich P. Mathematicians Going East. arXiv: 18.05. 00242

Для цитирования: Одинец В. П. Иммиграция в СССР: профили математиков. Ч. 2 // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 3 (28). C. 76–90.

Вестник 2 (27) 2018

Выпуск 2 (27) 2018

I. Беляева Н.А. Скорость стационарного напорного течения структурированной жидкости н.

Текст статьи

Анализируется напорное течение структурированной жидкости с переменной вязкостью. Из уравнения движения получена аналитическая формула для определения стационарной скорости течения.

Ключевые слова: математическое моделирование, течение, жидкость, структурированная, напорное, стационарное, переменная вязкость.

Список литературы

  1. Беляева Н. А. Неоднородное течение структурированной жидкости // Математическое моделирование. 2006. Т. 18. № 6. С. 3–14.
  2. Беляева Н. А., Столин А. М., Пугачев Д. В., Стельмах Л. С. Неустойчивые режимы деформирования при твердофазной экструзии вязкоупругих структурированных систем // ДАН. 2008. Т. 420. № 6. С. 777–780.
  3. Belyaeva N. A., Stolin A. M., Stelmakh L. S. Dynamic of SolidState Extrusion of Viscoelastic Cross-Linked polymeric Materials // Theoretical Foundations of Chemical Engineering, 2008. Vol. 42. No 5. Pp. 549–556.
  4. Беляева Н. А. Основы гидродинамики в моделях : учебное пособие. Сыктывкар: Изд-во Сыктывкарского госуниверситета, 2011. 147 с.
  5. Беляева Н. А., Яковлева А. Ф. Фронтальная волна напорного течения // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). С. 4–12.

Для цитирования: Беляева Н. А. Скорость стационарного напорного течения структурированной жидкости // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 2 (27). C. 3–9.

II. Громов Н. А., Куратов В. В. Гармонический осциллятор на плоскости минковского

Текст статьи

Рассмотрена задача о квантовомеханическом поведении гармонического осциллятора на плоскости Минковского с бесконечно высокими потенциальными барьерами на изотропных прямых. Описаны дискретные уровни энергии частицы.

Ключевые слова:плоскость Минковского, уравнение Шредингера, гармонический осциллятор.

Список литературы

  1. Громов Н. А., Куратов В. В. Гармонический осциллятор на плоскостях Кэли-Клейна с римановой и вырожденной метриками // Труды Межд. семинара «Теоретико-групповые методы исследования физических систем». Сыктывкар, 2018. (Вестник Коми НЦ УрО РАН. Вып. 33). С. 21–36.
  2. Громов Н. А., Куратов В. В. Квантовая частица на плоскости Минковского // Известия Коми НЦ УрО РАН. 2018. Вып. №3(35). С. 5–7.
  3. Ремнев М. А., Климов В. В. Метаповерхности: новый взгляд на уравнения Максвелла и новые методы управления светом // Успехи физических наук. 2018. Т. 188. № 2. С. 169–205.
  4. Smolyaninov I. I. Hyperbolic metamaterials; arXiv: 1510.07137.
  5. Грин М. Б., Шварц Дж., Виттен Э. Теория суперструн. М.: Мир, 1990.
  6. Каку М. Введение в теорию суперструн. М.: Мир, 1999. 624 с.
  7. Bars I. Relativistic Harmonic Oscillator Revisited // Phys. Rev. D V. 79. Iss. 4. 045009. 2009. arXiv: 0810.2075.
  8. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции М.: Мир, 1973. Т. 1.
  9. Шабад А. Е. Сингулярный центр как негравитационная черная дыра // Теоретическая и математическая физика 2014. Т. 181. № 3. С. 603–613. ТМФ. 2014. T. 181. № 3. C. 603–613.
  10. Переломов А. М., Попов В. С. «Падение на центр» в квантовой механике // Теоретическая и математическая физика. 1970. Т. 4. № 1. С. 48–65.
  11. Gitman D. M., Tyutin I. V., Voronov B. L. Self-Adjoint Extensions in Quantum Mechanics: General Theory and Applications to Schr¨odinger and Dirac Equations with Singular Potentials // Progress in Mathematical Physics, vol. 62. Birkh¨auser: New York, 2012. 511 p.

Для цитирования: Громов Н. А., Куратов В. В. Гармонический осциллятор на плоскости Минковского // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 2 (27). C. 10–23.

III. Казаков A. Ю. Точное решение уравнения теплопроводности в условиях симметрии

Текст статьи

В работе рассматривается применение операционного исчисления для решения смешанных краевых задач с уравнением Tt= a2∆T. Решения получены в виде традиционных для этого класса задач функциональных рядов Фурье.

Ключевые слова:преобразование Лапласа, уравнение теплопроводности, вычеты.

Список литературы

  1. Араманович И. Г., Лунц Г. Л., Эльсгольц Л. Э. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. 2-е изд. М.: Наука, 1968. 416 с.
  2. Беляева Н. А. Математическое моделирование : учебное пособие. Сыктывкар: Изд-во Сыктывкарского госуниверситета, 2014. 116 с.
  3. Боярчук А. К., Головач Г. П. Справочное пособие по высшей математике. Т. 5. Дифференциальные уравнения в примерах и задачах. М.: УРСС, 1999. 384 с.
  4. Кошляков Н. С. и др. Уравнения в частных производных математической физики : учебное пособие для мех.-мат. фак. ун-тов. М.: Высшая школа, 1970. 712 с.: ил.
  5. Боголюбов А. Н., Кравцов В. В. Задачи по математической физике : учебное пособие. М.: Изд-во МГУ, 1998. 350 с.
  6. Карлслоу Х., Егер Дж. Операционные методы в прикладной математике. М.: ИЛ, 1948. 294 с.
  7. Дёч Г. Руководство к практическому применению преобразования Лапласа и Z-преобразования. М.: Наука, 1971. 288 с.: ил.

Для цитирования:Казаков A. Ю. Точное решение уравнения теплопроводности в условиях симметрии // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 2 (27). C. 24–31.

IV. Костяков И. В., Куратов В. В. Квантовые вычисления и контракции алгебр ли

Текст статьи

Указана связь неунитарных преобразований Крауса матрицы плотности кубита с теорией контракций su(2) алгебры Ли. Продемонстрировано использование контракционных конструкций для описания квантовых каналов.

Ключевые слова:контракции алгебр Ли, квантовые каналы, кубит.

Список литературы

  1. Нильсен М. А., Чанг И. Л. Квантовые вычисления и квантовая информация. М.: Мир, 2006. 824 с.
  2. Прескилл Дж. Квантовая информация и квантовые вычисления. Ижевск: РХД, 2008, 2011. Т. 1-2. 464+312 с.
  3. Ruskai M. B., Szarek S., Werner E. An Analysis of CompletelyPositive Trace-Preserving Maps on 2×2 Matrices // Lin. Alg. Appl. V. 347, 2002. Pp. 159–187. ArXiv:quant-ph/0101003.
  4. Громов Н. А. Контракции классических и квантовых групп. М.: Физматлит; РАН, 2012. 318 с.
  5. In¨on¨u E., Wigner E. P. On the Contraction of Groups and Their Representations // Proc. Nat. Acad. Sci. V. 39. Iss. 6. Pp. 510–524. 1953.
  6. Saletan E. J. Contraction of Lie groups // J. Math. Phys. V. 2. Iss. 1. 1961. Pp. 1–21.

Для цитирования:Костяков И. В., Куратов В. В. Квантовые вычисления и контракции алгебр Ли // Вестник Сыктывкарскогоуниверситета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 2 (27). C. 32–39.

V. Пименов Р. Р. Геометрия перпендикулярного: аксиоматика многомерного пространства и законы де моргана

Текст статьи

В статье дается аксиоматика конечномерной геометрической структуры, использующая только отношение перпендикулярности. Эта структура оказывается проективным пространством, в котором выполняется геометрический аналог логических законов де Моргана. Указывается связь построения с аксиомой Веблена и разбиением на пары четырехэлементного множества различными способами. Исследование связано с теорией орторешеток, матроидами, связями Галуа и квантовой логикой.

Ключевые слова:основания геометрии, перпендикулярность, логика, орторешетки, связи Галуа.

Список литературы

  1. Cameron P. J. Projective and Polar Spaces, second edition. Sep 2000. http://www.maths.qmul.ac.uk/pjc/pps/ (дата обращения: 17.06.2018).
  2. Биркгоф Г. Теория решеток. М.: Наука, 1984. 565 с.
  3. Айгнер М. Комбинаторная теория / пер. с англ. В. В. Ермакова и В. Н. Лямина; под ред. Г. П. Гаврилова. М.: Мир, 1982. 556 с.
  4. Бахман Ф. Построение геометрии на основе понятия симметрии / пер. с нем. Р. И. Пименова; под ред. И. М. Яглома. М.: Наука, 1969. 380 с.
  5. Пименов Р. И. Единая аксиоматика пространств с максимальной группой движений // Литовский матем. сб. 1965. Т. 5. № 3. С. 457–486.
  6. Maclaren M. D. Atomic orthocomlemented lattices // Pacifific Journal of Mathematics. Vol. 14, June 1964. Pp. 697–612 (site https://msp.org/pjm/1964/14-2/pjm-v14-n2-p18-p.pdf )
  7. Norman D. Megill and Mladen Pavicˆ´i, Hilbert Lattice Equations // Ann. Henri Poincare 99 (9999), 1–24 1424-0637/99000-0, DOI 10.1007/s00023-003-0000 ©2009 Birkhauser Verlag Basel/Switzerland (site https://bib.irb.hr/datoteka/413891.megill-pavicic-a-henri-p-09r.pdf )
  8. Одинец В. П. Об истории некоторых математических методов, используемых при принятии управленческих решений. Сыктывкар: СГУ, 2015. 107 с.
  9. Васюков В. Л. Квантовая логика. М.: Пер Се, 2005. 191 c.
  10. Tabachnikov S. Skewers // Arnold Mathematical Journal. 2. 2016. Pp. 171–193.
  11. Пименов Р. Р. Обобщения теоремы Дезарга: геометрия перпен-дикулярного // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 28–43.
  12. Пименов Р. Р. Трактовки теорем Паппа: перпендикулярность и инволютивность // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 29–45.
  13. Пименов Р. Р. Геометрия перпендикулярного: тупые и острые углы в известных теоремах // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 3 (24). C. 56–73.

Для цитирования:Пименов Р. Р. Геометрия перпендикулярного: аксиоматика многомерного пространства и законы де Моргана // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 2 (27). C. 40–70.

VI. Одинец В. П. О математике из вены, иммигрировавшем в ссср для строительства «нового общества»

Текст статьи

Представлена жизнь и творчество выдающегося математика Феликса Франкля (1905–1961), уроженца Вены, уехавшего в 1929 году в СССР для того, чтобы строить «новое общество».

Ключевые слова:граница ориентируемого многообразия, простой конец, Л. С. Понтрягин, винт Жуковского, М. В. Келдыш, проблема Франкля, сопло Франкля – Лаваля, Л. Эйлер, модель боры.

Список литературы

  1. Гутман Л. Н., Франкль Ф. И. Термо-гидродинамическая модель боры // Доклады АН СССР. T. 130. № 3. 1960. С. 533–536.
  2. Kazakov A. In Commemoration of the Late Professor Lev N. Gutman // Украiнськiй гiдрометеорологiчний журнал, № 4. 2009. C.11–12.
  3. Келдыш М. В., Франкль Ф. Внешняя задача Неймана для нелинейных эллиптических уравнений в сжимаемом газе // Известия АН СССР. VII серия. 1934. № 4. С. 561–601.
  4. Келдыш М., Франкль Ф. Строгое обоснование теории винта Жуковского // Мат. сборник. 1935. T. 42. № 2. С. 241–273.
  5. Математика в СССР за 40 лет 1917–1957. Т. 2. Биобиблиография. М.: Физматгиз, 1959. 819 с.
  6. Frankl F. Zur Primendentheorie. (Dissertation). Wien: Universit¨at, 1927. 25 Bl. Verbund-ID-Nr. AC06513142.
  7. Frankl F., Pontrjagin L. Ein Knotensatz mit Anwendung auf die Dimensionstheorie // Mathematische Annalen. V. 102, No. 1. 1930. S. 785–789.
  8. Frankl F. Charakterisierung der (n-1)-dimensionalen abgeschlossenen Mengen des Rn// Mathematische Annalen. V. 103. No. 1. 1930. S. 784–787.
  9. Frankl F. Zur Primendentheorie // Мат. сборник. 1931. T. 38. № 3–4. С. 66–69.
  10. Frankl F. Zur Topologie des dreidimensionalen Raumes // Monatshefte f¨ur Mathematik und Physik. T. 38. 1931. S. 357–364.
  11. Франкль Ф. О плоскопараллельных воздушных течениях через каналы при околозвучных скоростях // Мат. сборник. 1933. T. 40. № 1. C. 59–72.
  12. Франкль Ф., Алексеева Р. Две краевые задачи из теории гиперболических уравнений в частных производных с приложением к сверхзвуковым газовым течениям // Мат. сборник. 1934. T. 41. № 3. C. 483–502.
  13. Франкль Ф. И. О задаче Коши для линейных и нелинейных уравнений в частных производных второго порядка гиперболического типа // Мат. сборник. 1937. T. 2 (44). № 5. C. 793–814.
  14. Франкль Ф. И., Христианович С. А., Алексеева Р. Н. Основы газовой динамики. М.: ЦАГИ, 1938. Вып. 364. 111 с.
  15. Франкль Ф. И., Карпович Е. А. Газодинамика тонких тел. М.; Л.: ГТТЛ, 1948. 175 с.
  16. Франкль Ф. И., Ильина А. А., Карпович Е. А. Курс аэродинамики в применении к артиллерийским снарядам / под ред. Л. И. Седова. М.: Оборонгиз, 1952. 684 с.
  17. Франкль Ф. И., Сухомлинов Г. А. Введение в механику деформируемых тел. Фрунзе, 1954. 204 с.
  18. Франкль Ф. И. О прямой задаче теории сопла Лаваля // Ученые записки Кабардино-Балкарского университета. 1959. Вып. 3. C. 35–61.
  19. Франкль Ф. И. Избранные труды по газовой динамике. М.: Наука, 1973. 711 с.
  20. Франкль Ф. И. О системе уравнений движения взвешенных потоков // Исследование максимального стока, волнового воздействия и движения наносов. М.: АН СССР, 1960. С. 85–91.
  21. Эйлер Л. Интегральное исчисление / пер. с латин. и автор. комментарий Ф. Франкля. М.: Физматгиз, 1958. Т. III. 447 с.

Для цитирования:Одинец В. П. О математике из Вены, иммигрировавшем в СССР для строительства «нового общества» // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 2 (27). C. 71–85.

VII. Ермоленко А. В., Мельников В. А. Расчет контактного взаимодействия прямоугольной пластины и основания по теории кармана

Текст статьи

В статье решается задача о контактном взаимодействии прямоугольной пластины и основания по теории Кармана с использованием конечно-разностной аппроксимации под действием нормальной нагрузки. Искомые функции найдены с использованием предложенного в Сыктывкарском университете метода обобщенной реакции. Полученные графики качественно согласуются с расчетами цилиндрически изгибаемой пластины.

Ключевые слова:пластина, метод обобщенной реакции, контактная задача, теория Кармана.

Список литературы

  1. Михайловский Е. И., Торопов А. В. Математические модели теории упругости. Сыктывкар: Сыктывкарский ун-т, 1995. 251 c.
  2. Ермоленко А. В. Численные методы в решении контактных задач со свободной границей // Проблемы развития транспортной инфраструктуры северных территорий : материалы Всероссийской научно-практической конференции 25–26 апреля 2014 года. СПб.: Изд-во ГУМРФ им. адм. С.О. Макарова, 2015. С. 29–35.
  3. Михайловский Е. И., Тарасов В. Н. О сходимости метода обобщенной реакции в контактных задачах со свободной границей // РАН. ПММ. 1993. Т. 57. Вып. 1. С. 128–136.
  4. Ермоленко А.В. Уточненные соотношения теории пластин, ориентированные на решение контактных задач // Вестник Сыктывкарского университета. Сер. 1. Математика. Механика. Информатика. 2014. Вып. 19. С. 25–32.

Для цитирования:Ермоленко А. В., Мельников В. А. Расчет контактного взаимодействия прямоугольной пластины и основания по теории Кармана // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 2 (27). C. 86–92.

VIII. Уваровская О. В., Михайлов А. В. Использование современных педагогических технологий в вузе (на примере линейной и векторной алгебры)

Текст статьи

Процессы, происходящие в высшей школе в настоящее время, предопределяют новые требования к преподаванию дисциплин. Для реализации компетентностного подхода в высшей школе требуется переход от процесса одностороннего взаимодействия — монолога (в режиме трансляции), к активному процессу двустороннего общения — диалогу (сначала в режиме общения, а затем и коммуникации [7]), что способствует более эффективному обучению студентов. Применение в преподавании интерактивных форм обучения, которые реализуются посредством современных педагогических технологий, позволяют формировать компетенции, определенные во ФГОС. В статье представлен и обоснован проект занятия по теме «Комплексные числа» с использованием интеграции технологий развития критического мышления и обучения в сотрудничестве.

Ключевые слова:современные педагогические технологии, комплексные числа.

Список литературы

  1. Загашев И. О., Заир-Бек С. И. Критическое мышление: технологии развития. СПб, 2003. 284 с.
  2. Педагогика высшей школы : учеб. пособие / под общ ред. О. В. Уваровской. Сыктывкар: Изд-во СыктГУ, 2013.
  3. Полат Е. С. Новые педагогические и информационные технологии в системе образования. М.: Академия, 2000.
  4. Уваровская О. В. Педагогика профессионального образования [Электронный ресурс] : учебное пособие. Сыктывкар: Изд-во СГУ им. Питирима Сорокина, 2017. 1 компакт-диск (CD-ROM).
  5. Курош А. Г. Курс высшей алгебры. 9-е изд. М.: Наука, 1968.
  6. Энциклопедия для детей. Т. 11. Математика / глав. ред. М. Д. Аксёнова; метод. и отв. ред. В. А. Володин. М.: Аванта+, 2003. 688 с.: ил.
  7. Бергельсон М. Б. Языковые аспекты виртуальной коммуникации // Вестн. МГУ. 2002. Cер. 19. № 1. С. 54.

Для цитирования:Уваровская О. В., Михайлов А. В. Использование современных педагогических технологий в вузе (на примере линейной и векторной алгебры) // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2018. Вып. 2 (27). C. 93–106.