Bulletin 3 (44) 2022

Full text

I. Ebgeniy M. Vechtomov About commutative multiplicatively idempotent semirings with the property of maximality of prime ideals


Ebgeniy M. Vechtomov – Vyatka State University, vecht@mail.ru


Annotation. The article continues investigation of commutative multiplicatively idempotent semirings with the property of maximality of prime ideals. The author gives a detailed proof of a
theorem claiming that any distributive lattice has the property of maximality of prime ideals if and only if it is a lattice with relative complements. For an arbitrary of commutative multiplicatively idempotent semiring with the identity x + 2xy = x the following is proved: the property of maximality for prime ideals there is equivalent the fact that the lattice associated with this semiring is a lattice with relative complements.

Keywords: semiring, commutative multiplicatively idempotent semiring, property of maximality of prime ideals.


  1. Vechtomov E. M., Petrov A. A. Funkcionalnaya algebra i polukolca. Polukolca s idempotentnym umnozheniem [Functional algebra and semirings. Semirings with idempotent multiplication]. St. Petersburg:Lan, 2022. 180 p. (In Russ.)
  2. Vechtomov E. M., Petrov A. A Prime ideals in multiplicatively idempotent semirings. textitMatematicheskie zametki [Mathematical notes]. 2022. Vol. 111. Issue 4. P. 494–505. (In Russ.)
  3. Vechtomov E. M., Petrov A. A. Multiplicatively idempotent semirings in which all congruences are ideal. Matematicheskie zametki [Mathematical notes]. 2022. Vol. 112. Issue 3. Pp. 376–383. (In Russ.)
  4. Vechtomov E. M., Petrov A. A. Multiplicatively idempotent semirings with the annihilator condition. Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii : materialy XXI Mezhdunarodnoj konferencii, posvyashhennoj 85-
    letiyu so dnya rozhdeniya A. A. Karacuby [Algebra, number theory and discrete geometry: modern problems, applications and problems of history: Materials XXI International conference dedicated to the 85th anniversary of the birth of A. A. Karatsuba]. Tula: TSPU im. L.N. Tolstoy, 2022. Pp. 125–128. (In Russ.)
  5. Vechtomov E. M., Petrov A. A. Multiplicatively idempotent semirings with additional conditions. Materialy 41-go Mezhdunarodnogo nauchnogo seminara prepodavatelej matematiki i informatiki
    universitetov i pedagogicheskix vuzov «Matematika i problemy obrazovaniya» [Proceedings of the 41st International Scientific Seminar for Teachers of Mathematics and Informatics of Universities and Pedagogical Universities «Mathematics and Problems of Education»]. Kirov: VyatGU, 2022. Pp. 4–8.
  6. Vechtomov E. M. Annihilator characterizations of Boolean rings and distributive lattices. Matematicheskie zametki [Mathematical notes].T. 53. Issue 2. Pp. 15–24. (In Russ.)
  7. Chermnykh V. V. Funkcionalnye predstavleniya polukolec [Functional representations of semirings]. Kirov: Publishing house of VyatGGU,224 p. (In Russ.)
  8. Gretzer G. Obshhaya teoriya reshetok [General theory of lattices]. M.: Mir, 1982. 456 p. (In Russ.)
  9. Skornyakov L. A. Elementy teorii struktur. 2-e izd., dop. [Elements of the theory of structures. 2nd ed., add.] Moscow: Nauka, 1982. 160 p. (In Russ.)

For citation: Vechtomov E. M. About commutative multiplicatively idempotent semirings with the property of maximality of prime ideals. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika.
Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2022, No 3 (44), pp. 4−20.https://doi.org/10.34130/1992-2752_2022_3_4

II. Yuriy V. Golchevskiy, Lidiya P. Shilova Selecting a Solution Method for the Problem of Automating the Classification of Texts Related to Industrial Safety Audits


Yuriy V. Golchevskiy – Pitirim Sorokin Syktyvkar State University, e-mail: yurygol@mail.ru

Lidiya P. Shilova – Semantic machines, e-mail: shilovalp@bk.ru


Abstract. The importance of solving problems arising from text classification in to-day’s world is undeniable, due to the fact that a huge amount of textual in-formation of different kinds is generated, which needs some processing and analysis.

Keywords: Machine Learning, Text Classification, Industrial Safety Audits.


  1. «Post Bank»: we saved hundreds millions rubles using biometrics.
    Available at: https://bloomchain.ru/newsfeed/k-kontsu-2019-godavseh-klientov-pochta-banka-budut-identifitsirovat-po-biometrii (accessed: 2021/10/05). (in Russ.)
  2. Loan scoring and fight against swindlers: AI in Russian banking sector. Available at: https://aiconference.ru/en/article/kreditniy-skoring-iborba-s-moshennikami-ob-ii-v-bankovskoy-sfere-rossii-96820 (accessed: 2021/10/05).
  3. Neurohive – Neural Networks. Available at: https://neurohive.io/en/
    (accessed: 2021/10/05).
  4. Hannun A. Y., Rajpurkar P., Haghpanahi M. et al. Cardiologistlevel arrhythmia de-tection and classification in ambulatory electrocardiograms using a deep neural net-work. Nat Med 25,Pp. 65–69. DOI: 10.1038/s41591-018-0268-3.
  5. Koshy R., Padalkar A., Nikam N., Jain V. Easy verdict: Digital assistant to resolve criminal litigation 10th International Conference on Advances in Computing, Con-trol, and Telecommunication Technologies, 2019. Pp. 17–23.
  6. Domingos P. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, New York, 2015.
  7. Mou S., Du P., Cheng Z. A brain-inspired information processing algorithm and its application in text classification. Expert Systems with Applications, Vol. 177, 2021. DOI: 10.1016/j.eswa.2021.114828.
  8. Asim M., Javed K., Rehman A., Babri H. A. A new feature selection metric for text classification: eliminating the need for a separate pruning stage. International Journal of Machine Learning
    and Cybernetics, 12(9), 2021. Pp. 2461–2478. DOI: 10.1007/s13042-021-01324-6.
  9. Shimomoto E. K., Portet F., Fukui K. Text classification based on the word subspace representation. Pattern Analysis and Applications, 24 (3), 2021. Pp. 1075-1093. DOI: 10.1007/s10044-021-00960-6.
  10. Zhang J., Zi L., Hou Y. et al. A C-BiLSTM approach to classify construction accident reports. Applied Sciences (Switzerland ), 10(17), DOI: 10.3390/APP10175754.
  11. Chi N.-W., Lin K.-Y., Hsieh S.-H. Using ontology-based text classification to assist Job Hazard Analysis. Advanced Engineering Informatics, 28(4), 2014. Pp. 381–394. DOI: 10.1016/j.aei.2014.05.001.
  12. Zhan, T. Classification Models of Text: A Comparative Study. IEEE 11th Annual Computing and Communication Workshop and Conference, CCWC 2021, 2021. Pp. 1221-1225. DOI:
  13. Li Y., Dai G., Li G. Feature selection method of text tendency classification. Proceedings – 5th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD-2008, 2008. Pp. 34–37. DOI:10.1109/FSKD.2008.263.
  14. Flach P. Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press, New York, 2012.
  15. Rani M.S., Sumathy S. Analysis on various machine learning based approaches with a perspective on the performance. Innovations in Power and Advanced Computing Technologies, i-PACT 2017, 2017. Pp. 1–7. DOI: 10.1109/IPACT.2017.8244998.
  16. Bengfort B., Bilbro R., Ojeda T. Applied Text Analysis with Python: Enabling Lan-guage-Aware Data Products with Machine Learning. 1st edn. O’Reilly Media, Inc., 2018.
  17. VanderPlas J. Python Data Science Handbook: Essential Tools for Working with Data. 1st edn. O’Reilly Media, Inc., 2017.
  18. Chollet F. Deep Learning with Python. Manning Publications Co,2017.
  19. G´eron A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd edn. O’Reilly Media, Inc., 2019.
  20. Buitinck L., Louppe G., Blondel M. et al. API design for machine learning software: experiences from the scikit-learn project. ECML PKDD Workshop: Languages for Data Mining and Machine Learning,Pp. 108–122.
  21. Rashka S., Mirjalil V. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow. 2nd edn. Packt Publishing, 2017.
  22. Brink H., Richards J. W., Fetherolf M. Real-World Machine Learning. 1st edn. Manning Publications Co, 2016..
  23. fastText. Library for efficient text classification and representation learning. Available at: https://fasttext.cc/ (accessed: 2021/10/05).
  24. Opitz D., Maclin R. Popular ensemble methods: An empirical study. Journal of Artifi-cial Intelligence Research, 11, 1999. Pp. 169–198. DOI:10.1613/jair.614.

For citation: Golchevskiy Yu. V., Shilova L. P. Selecting a Solution Method for the Problem of Automating the Classification of Texts Related to Industrial Safety Audits. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2022, No 3 (44), pp. 21−32. https://doi.org/10.34130/1992-2752_2022_3_21

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

III. Nadezhda N. Babikova Education in the digital age: remember or google


Nadezhda N. Babikova – Pitirim Sorokin Syktyvkar State University, e-mail: valmasha@mail.ru


Abstract.We live in an age of rapid changes in all areas of human practice, associated with the development of digital technologies. How do these changes affect the memory performance of modern students, what do students themselves think about these changes, and what cognitive
memory strategies are used in the learning process? How can we help students form the necessary level of memorization of educational material? The article presents the results of a study based on these questions.

Keywords: memory, memory performance, memory strategies, Internet, digital technologies.


  1. Research of the metacognitive awareness of university students / N. N. Babikova, O. A. Maltseva, E. N. Starceva, M. S. Turkina. Vestnik Marijskogo gosudarstvennogo universiteta [Vestnik Marijskogo gosudarstvennogo universiteta]. 2018. T. 12. No 3(31). Pp. 9−16. DOI
    10.30914/2072-6783-2018-12-3-9-16. (In Russ.)
  2. Metacognitive awareness and student achievement / N. N. Babikova, O. A. Maltseva, E. N. Starceva, M. S. Turkina. Dvadcat pyataya godichnaya sessiya Uchenogo soveta Syktyvkarskogo gosudarstvennogo universiteta imeni Pitirima Sorokina (Fevralskie chteniya) : sbornik materialov: tekstovoe nauchnoe elektronnoe izdanie na kompakt-diske, Syktyvkar, 01–28 fevralya 2018 goda [Twenty-fifth Annual Session of the Academic Council of Syktyvkar State University named after Pitirim Sorokin (February Readings) : collection of materials: text
    scientific electronic edition on CD-ROM]. Syktyvkar: Syktyvkarskij gosudarstvennyj universitet im. Pitirima Sorokina, 2018. 856 p. ISBN 978-5-87661-569-5. (In Russ.)
  3. Ashymova N. Sh., Kazakova N. O. Memory performance of 1st year students of the Faculty of Biology and Chemistry of KSU. I. Arabaeva. Problemy sovremennoj nauki i obrazovaniya [The problems of modern science and education]. 2017. No 7 (89). Pp. 16−19. (In Russ.)
  4. Byvsheva M. V., Kobalyan A. A., Hanova T. G. The study of mnemonic abilities of students in the context of educational and professional activities. Vestnik Mininskogo universiteta [Bulletin of
    Minin University]. 2017. No 1 (18). P. 19. (In Russ.)
  5. Dubinina M. N. The study of short-term memory of the students and graduate students of higher education. Vestnik Donskogo gosudarstvennogo agrarnogo universiteta [Bulletin of the Don State Agrarian University]. 2019. No 1-2 (31). Pp. 37−42. (In Russ.)
  6. Borodina A. N. Comparative analysis of memory indicators of modern students and students of the 70-80th. Vestnik Permskogo universiteta. Filosofiya. Psihologiya. Sociologiya [Bulletin of Perm University. Philosophy. Psychology. Sociology]. 2015. No 4 (24). Pp. 122−131. (In Russ.)
  7. Sparrow B., Liu J., Wegner D. M. Google effects on memory: cognitive consequences of having information at our fingertips. Science. 2011. Vol. 333. No. 6043. Pp. 776–778. Available
    at: https://psychology.ua.edu/wp-content/uploads/2016/03/Google-IsChanging-the-Way-we-Think.pdf (accessed: 07.09.2022).
  8. Davydovskij A., Pishchova A. Influence of the Internet environment on memory processes. Nauka i innovacii [Science and Innovations].No 12 (190). Pp. 28−33. (In Russ.)
  9. Chizhikova E. S. The influence of the Internet on memory. Tendencii i perspektivy razvitiya sociotekhnicheskoj sredy: Materialy IV mezhdunarodnoj nauchno-prakticheskoj konferencii, Moskva, 13 dekabrya 2018 goda / Otvetstvennyj redaktor I.L. Surat [Trends and
    prospects of development of socio-technical environment : materials of the IV International Scientific-Practical Conference, Moscow, December 13, 2018 / ed. by I. L. Surat.]. M.: Sovremennyj gumanitarnyj universitet, 2018. Pp. 474−479. (In Russ.)
  10. Kuznecova A. V. Mnemic Ability of the Internet Active Schoolboy of 14–16 years. Yaroslavskij pedagogicheskij vestnik [Yaroslavl Pedagogical Bulletin]. 2010. Vol. 2. No 4. Pp. 231−235. (In Russ.)
  11. Cheremoshkina L. V. The influence of Internet activity on the mnemonic abilities of the subject. Psihologiya. Zhurnal Vysshej shkoly ekonomiki [Psychology. Journal of the Higher School of Economics].Vol. 7. No 3. Pp. 57–71. (In Russ.)
  12. Vulf M. Proust and the Squid: The Neurobiology of Reading. M.: KoLibri, Azbuka-Attikus, 2020. P. 384. (In Russ.)
  13. Pintrich P. R. The Role of Metacognitive Knowledge in Learning, Teaching, and Assessing. Revising Bloom’s Taxonomy. Theory Into Practice. 2002. No. 41 (4). Pp. 219–225. Available at:
    https://www.researchgate.net/publication/242670371_The_Role_of_Metacognitive_Knowledge_in_Learning_Teaching_and_Assessing (accessed: 07.09.2022).
  14. Savin E. Yu., Fomin A. E. Generalized and subject-specific metacognitive skills in students learning activities. Psihologicheskie issledovaniya [Psychological research]. 2014. Vol. 7. No 37. P. 8.
Это изображение имеет пустой атрибут alt; его имя файла - hr.png

IV. Ramiz M. Aslanov, Vladislav V. Sushkov – Historical ways of emergence and development of complex analysis


Ramiz M. Aslanov – Institute of Mathematics and Mechanics, National Academy of Sciences of
Azerbaijan, e-mail: r_aslanov@list.ru

Vladislav V. Sushkov – Syktyvkar State University named after Pitirim Sorokin, e-mail: vvsu@mail.ru


Abstract. The work considers the history of the emergence and development of the theory of the function of a complex variable as a branch of science and its influence on the development of the
corresponding educational discipline. In both cases, the main stages of the historical process are highlighted, key figures, dates, facts, publications and results are indicated. It is argued that the traditional logic of the presentation of the educational discipline “Theory of functions of the complex variable”to a greater or lesser extent repeats the historical logic of the development of the scientific industry. The development of either specialized or as universal as possible textbooks adapted to different levels of teaching should take into account the history of the development of the discipline, but should be based on modern educational technologies and the possibilities of electronic
teaching tools and resources.

Keywords: theory of functions of complex variable, complex analysis, history of mathematics, educational discipline, stages of development, educational technologies, methodological component.


  1. Gindikin S. G. Great Art. Rasskazy o fizikax i matematikax [Stories about physicists and mathematicians. 3rd edition, expanded.] M.: ICNMO, 2001. Pp. 8–42. (In Russ.)
  2. Nikiforovsky V. A. Iz istorii algebry XVI—XVII vekov [From the history of algebra of the XVI–XVII centuries]. M.: Science, 1979. Pp. 42–88. (In Russ.)
  3. Stillwell D. Matematika i ee istoriya [Mathematics and its history]. Moscow-Izhevsk: Institute of Computer Research, 2004. P. 130. (In Russ.)
  4. Anokhina E. Yu. History of the development and formation of the theory of the function of the complex variable (TFKP) as a educational subject. Vestnik TGPI. Estestvennye nauki [Bulletin of TSPI. Natural sciences]. 2008. No 1. Pp. 83–87. (In Russ.)
  5. Sinkevich G. I. History of geometric representations of complex numbers. Istoriya nauki i tekhniki [History of science and technology]. No 4. Pp. 15–30. (In Russ.)
  6. Euler L. Vvedenie v analiz beskonechno malyh [Introduction to infinitesimal analysis]. Moscow-Leningrad, 1936. Vol. 1. (In Russ.)
  7. Wessel C. On the analytical Representation on Direction; an Attempt, applied Chiefl y to the Solution of Plane and Spherical Polygons. Smith D.E. A source book in Mathematics. Vol. 3. 1959. New York: Dover publications. Pp. 55–66.
  8. History of mathematics. From ancient times to the beginning of the New Age. Istoriya matematiki [History of Mathematics] / еdited by A.P. Yushkevich, in three volumes. M.: Science, 1970. Vol. I. 352 p. (In Russ.)
  9. Riemann B. Sochineniya [Works]. M.: OGIZ; Gostekhizdat, 1948. (In Russ.)
  10. Markushevich A. I. Contribution of Yu.V. Sokhotsky to the general theory of analytical functions. Istoriko-matematicheskie issledovaniya : v. 3 t. [Historical and mathematical research].Vol. 3. M.; L., 1950. (In Russ.)
  11. Smirnov V. I. Kurs vysshej matematiki dlya tekhnikov i fizikov : v 5 t. [Course of higher mathematics for technicians andphysicists : in 5 vols.]. M.; L., 1930. 467 p. (In Russ.)
  12. Shabat B. V. Vvedenie v kompleksnyj analiz : v 2 t. [Introduction to complex analysis : in 2 vol.]. Moscow: Lenand, 2020. 344 p. (In Russ.)

For citation: Aslanov R. M., Sushkov V. V. Historical ways of emergence and development of complex analysis. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2022,
No 3 (44), pp. 47−63. https://doi.org/10.34130/1992-2752_2022_3_47

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

V. Andrey V. Yermolenko, Nikita V. Kozhageldiev On the solution of the inhomogeneous biharmonic equation


Andrey V. Yermolenko – Pitirim Sorokin Syktyvkar State University, ea74@list.ru

Nikita V. Kozhageldiev – Pitirim Sorokin Syktyvkar State University.


Annotation. When calculating the stress-strain state of plates, it becomes necessary to solve an inhomogeneous biharmonic equation, the complexity of which is due to the presence of fourth derivatives. The article considers a review of methods for solving such equations, while the implementation of three solution methods is given – the Galerkin method and two iterative methods. An algorithm for constructing test cases is given.

Keywords: biharmonic equation, Galerkin method, iterative methods


  1. Kazakova A. O., Petrov A. G. Calculation of the flow of a viscous fluid between two arbitrarily moving cylinders of arbitrary section. Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki [Journal of Computational Mathematics and Mathematical Physics]. 2019. Vol. 59. No 6. Pp. 1063–1082. (In Russ.)
  2. Yermolenko A. V., Melnikov V. A. Calculation of the contact interaction of a rectangular plate and a base by the Karman theory. Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mexanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics]. 2018, 2 (27). Pp. 86–92. (In Russ.)
  3. Ben-Artzi М., Chorev I., Croisille J.-P., Fishelov D. A compact difference scheme for the biharmonic equation in planar irregular domains. SIAM J., 2009, No 47, pp. 3087—3108.
  4. Linden J. A Multigrid Method for Solving the Biharmonic Equation on Rectangular Domains. Advances in Multi-Grid Methods : proceedings of the conference held in Oberwolfach, December 8 to 13, 1984. Braunschweig; Wiesbaden: Vieweg, 1985. (Notes on numerical fluid
    mechanics; Vol. 11), pp. 64–66.
  5. Kobel’kov G. M. On the reduction of a boundary value problem for a biharmonic equation to a Stokes-type problem. Dokl. AN SSSR [Reports of the USSR Academy of Sciences], 1985, Vol. 283, No 3, pp. 539–541. (In Russ.)
  6. Demidovich B. P., Maron I. A., SHuvalova E. Z. Chislennye metody analiza [Numerical methods of analysis]. Moskva: Gosudarstvennoe izdatel’stvo fiziko-matematichekoj literatury, 1963.
    400 p. (In Russ.)
  7. Mihajlovskii E. I. Lekcii po variacionnym metodam mekhaniki uprugih tel [Lectures on variational methods of mechanics of elastic bodies]. Syktyvkar: Izd-vo Syktyvkarskogo universiteta, 2002. 256 p. (In Russ.)
  8. Ryazhskih V. I., Slyusarev M. I., Popov M. I. Numerical integration of the biharmonic equation in the square domain. Vestnik Sankt-Peterburgskogo universiteta. Ser. 10 [Herald of St. Petersburg University. Series 10]. 2013, No. 1, pp. 52–62. (In Russ.)
  9. Eremenko S. YU. Metody konechnyh elementov v mekhanike deformiruemyh tel [Finite element methods in mechanics of deformable bodies]. Kharkov: Izd-vo “Osnova” pri Har’k. un-t, 1991. 272 p. (In Russ.)
  10. Fedorenko R. P. On the rate of convergence of one iterative process. ZH. vychisl. matem. i matem. fiz. [Journal of Computational and Mathematical Physics], 1964, Vol. 4, No 3, pp. 559—564. (In Russ.)
  11. Brenner S. C. An optimal-order nonconforming multigrid method for the biharmonic equation. SIAMJ. Numer. Anal. 26 (1989), pp. 1124- 1138.
  12. Jiang Y., Wang B., Xu Y. A fast Fourier–Galerkin method solving a boundary integral equation for the biharmonic equation. SIAM J. NUMER. ANAL. 2014, Vol. 52, No 5, pp. 2530–2554.
  13. Greenbaum A., Greengard L. , Mayo A. On the numerical solution of the biharmonic equation in the plane. Phys. D, 60 (1992), pp. 216–225.
  14. Romakina O. M., Shevcova YU. V. Spline-collocation method and its modification in problems of static bending of a thin orthotropic rectangular plate. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika [Izvestia of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics], 2010, Vol. 10. No 1, pp. 78–82. (In Russ.)
  15. Yermolenko A. V., Osipov K. S. On using Python libraries to calculate plates. Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mexanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics], 2019, 4 (33), pp. 86–95.(In Russ.)

For citation: Yermolenko A. V., Kozhageldiev N. V. On the solution of the inhomogeneous biharmonic equation. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2022, No 3 (44), pp. 64−78. https://doi.org/10.34130/1992-2752_2022_3_64

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

Leave a Comment