I. Andrey V. Yermolenko, Oksana I. Turkova Determination of stresses on the front surfaces of the plate
https://doi.org/10.34130/1992-2752_2023_2_4
Andrey V. Yermolenko – Pitirim Sorokin Syktyvkar State University, ea74@list.ru
Oksana I. Turkova – Pitirim Sorokin Syktyvkar State University
Abstract. When solving contact problems, it is necessary to set the interaction conditions using the displacements of the front surfaces of the plate.
Keywords: plate theory, reference surface, stresses.
References
- Mikhailovskii E. I., Toropov A. V. Matematicheskiye modeli teorii uprugosti [Mathematical models of theory of elasticity]. Syktyvkar: Syktyvkarskij un-t [Syktyvkar: Syktyvkar State University], 1995. 251 p. (In Russ.)
- Mikhailovskii E. I. Shkola mekhaniki obolochek akademika Novozhilova [Academic Novozhilov’s school of mechanics of shells]. Syktyvkar: Izd-vo Syktyvkarskogo un-ta [Syktyvkar: Publishing House of Syktyvkar University], 2005. 172 p. (In Russ.)
- Mikhailovskii E. I.,Badokin K. V., Ermolenko A. V. Karman type theory of flexure of plates without Kirhgof’s hypotheses. Vestnik Syktyvkarskogo universiteta. Seriya 1 [Bulletin of Syktyvkar University. Series 1], 1999, issue 3, pp. 181–202. (In Russ.)
- Timoshenko S. P. Kurs teorii uprugosti, ch. II. Sterzhni I plastinki [Course of theory of elasticity, part II. Shafts and plates]. Petrograd: Izd-vo in-ta inzh. putej soobscheniya, 1916. Izd. 2-e. Kiev: Naukova dumka [Petrograd: Publishing House of institute of Railway Engineers,
- Vol. 2. Kiev: Publishing House of Naukova Dumka], 1972. 507 p. (In Russ.)
- Naghdi P. M. On the theory of thin elastic shells. Quarterly of Applied Mathematics. 1957, 14, no 4, pp. 369–380.
- Chernyh K. F. Nelinejnaya teoriya uprugosti v mashinostroitel’nyh raschetah. [Nonlinear theory of elasticity in mechanical engineering calculations] L.: Mashinostroenie [Leningrad: Mechanical engineering], 336 p. (In Russ.)
- Yermolenko A. V., Mironov V. V. Mechanism of the effect of transverse shifts on the stress state in the problems of plate and shell mechanics. International Journal of Recent Technology and Engineering (IJRTE). 2019, vol. 7, issue 5, January, pp. 318–321.
- Mikhailovskii E. I., Ermolenko A. V., Mironov V. V., Tulubenskaya E. V. Utochnennye nelinejnye uravneniya v neklassicheskih zadachah mekhaniki obolochek : uchebnoe posobie [Refined nonlinear equations in non classical tasks of mechanics of shells]. Syktyvkar: Izd-vo Syktyvkarskogo un-ta [Syktyvkar: Publishing House of Syktyvkar University], 2009. 141 p. (In Russ.)
- Kulikov G. M., Plotnikova S. V. Solvation of three dimensional tasks for thick elastic shells based on method of base surfaces. Mekhanika tverdogo tela [Mechanics of solid body], 2014, no 4,
pp. 54–64. (In Russ.) - Hallquist J. O., Benson D. J. A comparison of an implicit and explicit implementation of the Hughes-Liu shell. Finite Element Metdods for Plate and Shell Structures / eds T. J. R. Hughes, E. Hinton. Swansea: Pineridge Press, 1986. Vol. 1. Pp. 394–431.
- Korobejnikov S. N., Shutov A. V. The choice of basic surface in equations of plates and shells. Vychislitel’nye tekhnologii [Computing technologies], 2003, vol. 8, pp. 38–59. (In Russ.)
- Schoop H. Oberfl¨achenorientierte Schalentheorien endlicher Verschiebungen. Ing.-Archiv. 1986. B. 56, no 6, s. 427–437.
- Nikabadze M. U. Parameterization of shells based on two basic surfaces. Dep. V VINITI AN SSSR [Department of All-Union Institute for Scientific and Technical Information of USSR Academy of Sciences], 12.07.1988. № 5588–V88. 29 p. (In Russ.)
- Kim Y. H., Lee S.W. A solid element formulation for large deflection analysis of composite shell structures. Comp. Struct, 1988, vol. 30. no 1–2, pp. 269–274.
- Kulikov G. M., Plotnikova S. V. Comparative analysis of two algorithms of numerical solution of nonlinear tasks of static of multilayer anisotropic shells of rotation. 2. Accounting of transverse compression. Mekh. kompozit. materialov [Mechanics of composite materials], 1999,
vol. 35, no 4, pp. 435–446. (In Russ.) - Nikabadze M. U. Some geometry ratios of theory of shells with two basic surfaces. Izv. RAN. MTT [Mechanics of Solids. A Journal of Russian Academy of Sciences], 2000, no 4., pp. 129–139. (In Russ.)
- Kulikov G. M., Plotnikova S. V. Finite deformation plate theory and large rigid-body motions. Int. J. Non-Linear Mech, 2004, vol. 39, no 7, pp. 1093–1109.
- Ermolenko A. V. Theory of Karman-Timoshenko-Nagdi type plane plates regarding of arbitrary basic plane. V mire nauchnyh otkrytij [In the World of Scientific Discoveries]. Krasnoyarsk: Science and Innovation Center Publishing House, 2011. No 8.1 (20), pp. 336–347. (In Russ.)
- Yermolenko A. V. The choice of basic surface in contact tasks with free boundary. Vestnik Syktyvkarskogo universiteta. Seriya 1 [Bulletin of Syktyvkar University. Series 1]. 2013, issue 18, pp. 42–47. (In Russ.)
For citation: Yermolenko A. V., Turkova O. I. Determination of stresses on the front surfaces of the plate. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 2 (47), pp. 4−16. https://doi.org/10.34130/1992-2752_2023_2_4
II. Vadim A. Melnikov About architectural features of collisions filtering in the physics engine for 3D games
https://doi.org/10.34130/1992-2752_2023_2_17
Vadim A. Melnikov – Pitirim Sorokin Syktyvkar State University, muller95@yandex.ru
Abstract. The article discusses parallel and sequential approaches to the implementation of collision filtering based on array sorting and measures the performance of various sorts with different numbers of threads.
Keywords: physics, collisions, filtering, AABB, sorting.
References
- Melnikov V. A. Development Process of game engine core for 2Dgames and interfaces Sad Lion Engine. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics], 2019, 4 (33), pp. 21–37. (In Russ.)
- Melnikov V. A., Yermolenko A. V. Development of XMLbased Markup Language. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics], 2022, 1 (42), pp. 61–73.
- Gregory J. Game engine architecture, 3rd edition. Boca Raton: CRC Press. 2019, 1200 p.
- Zubek P. Elementy geymdizayna. Kak sozdavat’ igry, ot kotorykh nevozmozhno otorvat’sya [Elements of game design. How to create games from which it is impossible to break away]. M.: Bombora, 2022. 272 p. (In Russ.)
- Strashnov E. V., Torgrashev M. A. Collision detection algorithms of bounding cylinders with terrain model. International Journal of Open Information Technologies. 2020, vol. 8, no 7, pp. 40–49. (In Russ.)
- Ericson C. Real-time collision detection. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Morgan Kaufman Publishers, 593 p.
- Huang X., Liu Z., Li J. Array sort: an adaptive sorting algorithm on multi-thread. The Journal of Engineering. 10.1049/joe.2018.5154. 2019, pp. 3455–3459.
- Millington I. Game physics engine development. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Morgan Kaufman Publishers, 456 p.
- Huynh J. Separating axis theorem for oriented bounding boxes [Electronic resource]. Available at: http://www.jkh.me/files/tutorials/Separating%20Axis%20Theorem% 20for%20Oriented%20Bounding%20Boxes.pdf (accessed: 30.05.2023).
- Bhagrav N. Cache-friendly code [Electronic resource].Baeldung. Available at: https://www.baeldung.com/cs/cache-friendly-code (accessed: 30.05.2023).
- House D. H., Keyser J. C.Foundations of physically based modelling and animation. Boca Raton: CRC Press, 2017. 382 p.
- Fundamental types [Electronic resource]. C++ reference. Available at: https://en.cppreference.com/w/cpp/language/types (accessed: 30.05.2023).
- Godot [Electronic resource]. Godot. Available at: https://godotengine.org/ (accessed: 30.05.2023).
- std::stable_sort [Electronic resource]. C++ reference. Available at: https://en.cppreference.com/w/cpp/algorithm/stable_sort (accessed: 30.05.2023).
- Array [Electronic resource]. Godot docs. Available at: https://docs.godotengine.org/en/stable/classes/class_array.html (accessed: 30.05.2023).
- Ozeritskiy A. V. Computational simulation using particles on GPU and GLSL language. Vych. met. programmirovaniye[Numerical Methods and Programming]. 2023, issue 1 (24), pp. 37–54. (In Russ.)
- Knuth D. Iskusstvo programmirovaniya. T. 3. Sortirovka i poisk. [The art of computer programming. Vol. 3. Sorting and searching]. M.: Vilyams, 2001. 824 p.
III. Vladimir P. Odinets On the works of five Moscow mathematicians who died during
the Great Patriotic War
https://doi.org/10.34130/1992-2752_2023_2_29
Vladimir P. Odinets – W.P.Odyniec@mail.ru
Abstract. The article describes the works of five Moscow mathematicians: M. Bebutov, N. Vedenisov, M. Gleserman, D. Shklyarsky, D. Junovic’, who died in 1941–1942. In the description of the works the biographies of these mathematicians are also given.
Keywords: dynamical system, stability in sense of Lyapunov, Hausdorff space, first axiom of countability, second axiom of countability.
References
- Bebutov M. V. On dynamical systems stable according to Lyapunov. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 18, no 3, pp. 155–158. (In Russ.)
- Bebutov M. V. One theorem on simplicial complexes. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1939. 19, no 5, pp. 347–348. (In Russ.)
- Bebutov M. V., Shneider V. E. About one countable topological space. Uchenye zap. uni-ta [Academic Notes of the University]. 1939. 30, pp. 157–160. (In Russ.)
- Bebutov M. V. Mapping the trajectories of a dynamical system to a family of parallel lines. Moscow: Byull.uni-ta (A) [University Bulletin]. 2, no 3, pp. 3–23. (In Russ.)
- Bebutov M. V., Stepanov V. V. On the change of time in dynamical systems with an invariant measure. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1939. 24, no 3, pp. 217–219. (In Russ.)
- Bebutov M. V. On invariant measurement in dynamical systems that differ only by times. Matem. sb. [Mathematical collection]. 1940. 7 (49), no 1, pp. 143–166.
- Bebutov M.V. On dynamical systems in the space of continuous functions. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1940. 29, no 9, pp. 904–906. (In Russ.)
- Bebutov M. V. O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsiy [On dynamical systems in the space of continuous functions]. Moscow: Izd-vo MGU, 1940. 52 p. (Byulleten’ Moskovskogo gosudarstvennogo universiteta. Matematika [Bulletin of Moscow State University. Mathematics] / eds B. V. Gnedenko, A. N. Kolmogorov, V. V. Stepanov. Vol. 2, no 5). (In Russ.)
- Bebutov M. V. Markov chains with compact state space. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1941. 30, no 6, pp. 180–181. (In Russ.)
- Bebutov M. V. Markov chains with compact state space. Matem. sb. [Mathematical collection]. 1942. 52, no 3, pp. 213–238. (In Russ.)
- Alekseev V. M., Fomin S. V. Mikhail Valeryevich Bebutov. UMN [Russian Mathematical Surveys]. 1970. 25, no 3, pp. 237–239. (In Russ.)
- Tychonoff A. N., Vedenissoff N. B. Sur le d´evelopment modern de la th´eorie des espaces abstraits. Вull. sci. math. 1926. 50. Pp. 15–27.
- Vedenisov N. B. About full metric spaces. J. math. pur. et appl. 9, pp. 377–392.
- Vedenisov N. B. On continuous functions in topological spaces. Fund. Math., 1936. 27, pp. 234–238.
- Vedenisov N. B. About one problem of Pavel Alexandrov. Ann. of Math. 1936. 37, pp. 427–428.
- Vedenisov N. B. On manifolds in the sense of E.Cech. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1937. 16, no 9, pp. 443–445. (In Russ.)
- Vedenisov N. B. On some topological properties of ordered sets. Uchenye zapiski gos. ped. inst-ta. Ser. fiz.-mat. [Uchen. notes of the State ped. in-ta. Ser. of phys.-math.]. 1938, 2, pp. 15–26. (In Russ.)
- Vedenisov N. B. Remarks on continuous functions in topological spaces. Uchenye zapiski gos. ped. inst-ta. Ser. fiz.-mat. [Uchen. notes of the State ped. in-ta. Ser. of phys.-math.]. 1938, 2, pp. 47–52. (In Russ.)
- Vedenisov N. B. Remarks on the dimensionality in topologicalspaces. Uchenye zapiski uni-ta [Academic Notes of the University].1939, 30, pp. 131–140. (In Russ.)
- Vedenisov N. B. Generalization of one theorem of dimensionality theory. Uchenye zapiski gos. ped. inst-ta. Ser. fiz.-mat. [Uchen. notes of the State ped. in-ta. Ser. of phys.-math.]. 1940, 7, pp. 35–40. (In Russ.)
- Vedenisov N. B. Generalization of several theorems of dimensionality. Comp. Mathem., 1940, 7, pp. 194–200.
- Vedenisov N. B. On the dimensionality in the sense of E. Cech. Izv. AN USSR. Ser. matem. [Proceedings of the Academy of Sciences of the USSR. Ser. mathem.]. 1941, 5, pp. 211–216. (In Russ.)
- Vedenisov N. B. Bicompact spaces. UMN [Russian Mathematical Surveys]. 1943, 3, no 4, pp. 67–79. (In Russ.)
- Alexandrov P. S. Nicolay Borisovich Vedenisov. UMN [Russian Mathematical Surveys]. 1970. 25, no 3, pp. 239–241. (In Russ.)
- Kazhdan Ya. M. Mark Efimovich Glezerman. UMN [Russian Mathematical Surveys]. 1970, 25, issue 3, pp. 241–243. (In Russ.)
- Pontryagin L. S., Glezerman M. E. Intersections of manifolds. UMN [Russian Mathematical Surveys]. 1947, 2, issue 1, pp. 58–155. (In Russ.)
- Golovina L. I. David Oskarovich Shklyarsky. UMN [Russian Mathematical Surveys], 1970, 25, issue 3, pp. 248–252. (In Russ.)
- Shklyarsky D. O. Moscow Mathematical Circle. UMN [Russian Mathematical Surveys]. 1945, 1, issue 3, pp. 212–217. (In Russ.)
- Cherneev S. V., Romanyuk V. Ya., Vdovin A. I. and others. Moskovskiy universitet v Velikoy Otechestvennoy voyne [Moscow University in the Great Patriotic War]. 4-e izd. Moscow: Izd-vo MGU, 632 c. (In Russ.)
- Shklyarsky D. O. On the partitioning of two-dimensional sphere. Matem. sb. [Mathematical collection]. 1945, 58, no 2, pp. 126–128. (In Russ.)
- Junovic’ B. M. On the differentiation of absolutely additive functions of sets. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1941, 30, no 1, pp. 112–114. (In Russ.)
For citation: Odinets V. P. On the works of five Moscow mathematicians who died during the Great Patriotic War. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 2 (47), pp. 29−55. https://doi.org/10.34130/1992-2752_2023_2_29
IV. Vladimir A. Ustyugov, Ivan I. Lavresh, Yuriy N. Istomin ,Pavel A. Makarov The use of SDR devices in the educational process for technical specialties of universities
https://doi.org/10.34130/1992-2752_2023_2_56
Vladimir A. Ustyugov – Pitirim Sorokin Syktyvkar State University, kib@syktsu.ru
Ivan I. Lavresh – Pitirim Sorokin Syktyvkar State University, kib@syktsu.ru
Yuriy N. Istomin – Pitirim Sorokin Syktyvkar State University, kib@syktsu.ru
Pavel A. Makarov – Federal Research Centre Komi Science Centre, Ural Branch, RAS, makarovpa@ipm.komisc.ru
Abstract. The article deals with the principles of modern software defined radio (SDR). Interest in such devices is due to the low cost of certain models, as well as a wide range of tasks in the
search and digital processing of electromagnetic signals in the context of technical protection of information, the study of the spread of digital and analog signals in urban environments, construction of new digital communication systems. Specific examples of defined signals and software tools for developing radio receiver configurations are considered.
Keywords: digital signal processing, software-defined radio.
References
- Bikkenin R. R., Chesnokov M. N. Teoriya elektricheskoj svyazi [The theory of electrical communication]. Мoscow: Akademia, 2010. 336 p. (In Russ.)
- Gepko I. A. Sovremennye besprovodnye seti: sostoyanie i perspektivy razvitiya [Modern Wireless Networks: Status and Prospects of Development]. Кiev: «EKMO», 2009. 672 p. (In Russ.)
- Sklyar B. Cifrovaya svyaz. Teoreticheskie osnovy i prakticheskoe primenenie [Digital communication. Theoretical foundations and practical applications]. Мoscow: Wiljams, 2007. 1104 p. (In Russ.)
- Galkin V. A. Osnovy programmno-konfiguriruemogo radio [Fundamentals of reconfigurable radio]. Мoscow: Goryachaya liniya – Telekom, 2020. 372 p. (In Russ.)
- Fokin G. A. Texnologii programmno-konfiguriruemogo radio [Software-configurable radio technologies]. Мoscow: Goryachaya liniya – Telekom, 2023. 316 p.(In Russ.)
- Kheld G. Texnologii peredachi dannyx [Data transmission technologies]. SPb.: BHV, 2003. 720p. (In Russ.)
- Ratynskij M. V. Osnovy sotovoj svyazi [Cellular basics]. Мoscow: Radio i svyaz, 2000. 248p. (In Russ.)
V. Elena Yu. Yashina Proof of Frobenius’ Theorem as Completion of Algebra and Numerical Systems Course at Pedagogical University
https://doi.org/10.34130/1992-2752_2023_2_69
Elena Yu. Yashina – The Herzen State Pedagogical University of Russia, elyashina@mail.ru
Abstract. The article presents an original proof of Frobenius’ theorem on finite-dimensional division algebras over a field of real numbers. The theorem shows the impossibility of extension of the concept of number, so its proof is useful for the formation of professional competencies of future mathematics teachers.
Keywords: number line, real numbers, finite-dimensional division algebra, Frobenius’ theorem.
References
- Zhmurova I. Yu. The study of Numerical Systems in a Pedagogical University in the context implementing links. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal [International Research Journal]. 2020, no 8-3 (98), pp. 28–31. (In Russ.) https://doi.org/10.23670/IRJ.2020.98.8.073
- Panteleymonova A. V., Belova M. A. Development of the concept of number in the school mathematics course. Continuum. Matematika. Informatika. Obrazovaniye [Continuum. Mathematics. Computer science. Education]. 2019, no 4 (16), pp. 31–37. (In Russ.)
- Drozd Yu. A., Kirichenko V. V. Konechnomernye algebry [Finitedimensional algebras]. Kiev: Visha shkola, 1980. 192 p. (In Russ.)
For citation: Yashina E. Yu. Proof of Frobenius’ Theorem as Completion of Algebra and Numerical Systems Course at Pedagogical University. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 2 (47), pp. 69−82. https://doi.org/10.34130/1992-2752_2023_2_69
VI. Evgenija A. Kaneva About the work of the scientific and methodological seminar on the problems of education and the methodology of teaching mathematics
https://doi.org/10.34130/1992-2752_2023_2_83
Evgenija A. Kaneva – Pitirim Sorokin Syktyvkar State University, kaneva.zhenya@mail.ru
Abstract. In modern society, specialists of various profiles are required, in particular, to have developed logical thinking, the ability to quickly adapt to changing socio-economic conditions and
search for non-trivial solutions in problem situations, and the ability to work in a team.
Keywords: scientific and methodological seminar, research activity, pedagogical mentoring, student science.
References
- Popov N. I., Kaneva E. A. The use of correlation analysis in the study of the quality of education of future teachers of mathematics and computer science. Gumanitarnye nauki i obrazovanie [Humanities and Education]. 2022, vol. 13, no 4 (52), pp. 95–99. (In Russ.)
- Popov N. I., Yakovleva E. V. Methodological aspects of blended teaching of mathematics to students of medical specialties at the university. Perspektivy nauki i obrazovaniya [Prospects for science and education]. 2022, no 3 (57), pp. 232–252. (In Russ.)
- Yakovleva E. V. Innovative Approaches in Teaching Mathematics to Future Doctors at a Regional University. Mir nauki, kul’tury, obrazovaniya [The world of science, culture, education]. 2022, no 5 (96), pp. 176–181. (In Russ.)
- Popov N. I., Bolotin E. S. Using the Python IDLE Development and Training Environment for Students to Learn Probability. Vestnik MGPU. Seriya: Informatika i informatizaciya obrazovaniya [Bulletin MGPU. Series: Informatics and informatization of education]. 2023, no 1 (63), pp. 79–85. (In Russ.)
- Shustova E. N. Obuchenie aksiomaticheskomu metodu vvedeniya elementarnyh funkcij v vuze kak komponent sistemy formirovaniya metodicheskoj kompetentnosti budushchih uchitelej matematiki: dissertaciya . . . kandidata pedagogicheskih nauk: 13.00.02 [Teaching
the axiomatic method of introducing elementary functions at the university as a component of the system for the formation of methodological competence of future teachers of mathematics:
dissertation . . . candidate of pedagogical sciences: 13.00.02]. E. N. Shustova; [Mesto zashchity: RGPU im. A. I. Gercena]. SPb, 275 p. (In Russ.) - Popov N. I. Fundamentalizaciya universitetskogo matematicheskogo obrazovaniya : monografiya [Fundamentalization of University Mathematical Education : Monograph]. Yelets: EGU im. I. A. Bunina, 174 p. (In Russ.)
- Popov N. I., Kaneva E. A. Using the electronic course “School Mathematical Practicum”in the preparation of future teachers. Vestnik MGPU. Seriya: Informatika i informatizaciya obrazovaniya [Bulletin MGPU. Series: Informatics and informatization of education]. 2022, no 4 (62), pp. 109–118. (In Russ.)
- Popov N. I., Kaneva E. A. Formation of cognitive interest of schoolchildren in mathematics using computer learning games. Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mehanika.
Informatika [Bulletin of the Syktyvkar University. Ser. 1: Math. Mechanics. Informatics]. 2022, no 2 (43), pp. 55–66. (In Russ.) - Popov N. I., Kaneva E. A., Bolotin E. S. Study of the special abilities of university students in teaching mathematics. Mir nauki, kul’tury, obrazovaniya [The world of science, culture, education]. 2022, no 1 (92), pp. 110–113. (In Russ.)
- Shustova E. N. Features of using the axiomatic method of introducing elementary functions in teaching future teachers of mathematics at the university. Obrazovatel’nyj vestnik «Soznanie»
[Educational bulletin “Consciousness”]. 2022, vol. 24, no 4, pp. 23– (In Russ.) - Popov N. I., Bobrova G. Yu. Methodological features of teaching the basics of probability theory in high school. Dvadtsat’ devyataya godichnaya sessiya Uchenogo soveta Syktyvkarskogo
gosudarstvennogo universiteta imeni Pitirima Sorokina [Elektronnyy resurs] : Fevral’skiye chteniya : Natsional’naya konferentsiya : sbornik statey / otv. red.: O. A. Sotnikova, N. N. Novikova [Twenty-ninth annual session of the Academic Council of Syktyvkar State University named Pitirim Sorokin [Electronic resource] : February readings : National conference : collection of articles / ed.: O. A. Sotnikova, N. N. Novikova]. Syktyvkar: Publishing House of the SSU Pitirim Sorokin, 2022, pp. 473–476. (In Russ.)
For citation: Kaneva E. A. About the work of the scientific and methodological seminar on the problems of education and the methodology of teaching mathematics. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 2 (47), pp. 83−92. https://doi.org/10.34130/1992-2752_2023_2_83