Bulletin 1 (46) 2023

Full text

Elena A. Sozontova On new cases of solvability of the Goursat problem in quadratures for one hyperbolic type system


Elena A. Sozontova – Elabuga Institute KFU, sozontova-elena@rambler.ru


Abstract. The paper investigates the Goursat problem for a hyperbolic type system with two independent variables. With the help of factorization of the equations of the system under consideration, new cases of solvability in the quadratures of the problem are obtained.

Keywords: hyperbolic system, the Goursat problem, solvability in quadratures.


  1. Bicadze A. V. Nekotorye klassy uravnenij v chastnyh proizvodnyh [Some classes of partial differential equations]. Moscow: Nauka, 1981, 448 p. (In Russ.)
  2. Sozontova E. A. On solvability by quadratures conditions of boundary value problems for second order hyperbolic systems. Ufimskij matematicheskij zhurnal [Ufa mathematical journal], 2016, vol. 8, no 3, pp. 135–140. (In Russ.)
  3. Sozontova E. A. On new cases of solvability of the Goursat problem in quadratures for a second-order system. Trudy Matematicheskogo centra imeni N. I. Lobachevskogo: materialy XVI molodezhnoj nauchnoj shkoly-konferencii “Lobachevskie chteniya – 2017” [Proceedings of the N. I. Lobachevsky: materials of the XVI Youth Scientific School-Conference “Lobachevsky Readings – 2017”], 2017, pp. 140–141. (In Russ.)
  4. Bicadze A. V. Uravneniya matematicheskoj fiziki [Equations of mathematical physics]. Moscow: Nauka, 1982, 336 p. (In Russ.)
  5. Zhegalov V. I., Mironov A. N. Differencial’nye uravneniya so starshimi chastnymi proizvodnymi [Differential equations with higher partial derivatives]. Kazan: Kazanskoe matematicheskoe obshchestvo, 2001, 226 p. (In Russ.)
  6. Zhegalov V. I. On solvability cases for hyperbolic equations in terms of special functions. Neklassicheskie uravneniya matematicheskoi fiziki [Nonclassical Equations of Mathematical Physics]. Novosibirsk: Mathematical Institute, Russian Academy of Science, Siberian Branch,
    2002, pp. 73–79. (In Russ.)
  7. Zhegalov V. I., Sarvarova I. M. Solvability of the Goursat problem in quadratures. Izvestiya vuzov. Matematika [Russian Mathematics], 2013, no 3, pp. 68–73. (In Russ.)
  8. Zhegalov V. I., Sozontova E. A. An addition to the cases of solvability of the goursat problem in quadratures. Differencial’nye uravneniya [Differential equations], 2017, vol. 53, no 2, pp. 270–272. (In Russ.)
  9. Chekmaryov T. V. Solution of a hyperbolic system of two partial differential equations with two unknown functions. Izvestiya vuzov. Matematika [Russian Mathematics], 1959, no 6, pp. 220–228. (In Russ.)

For citation: Sozontova E. A. On new cases of solvability of the Goursat problem in quadratures for one hyperbolic type system. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 1 (46), pp. 4−13. https://doi.org/10.34130/1992- 2752_2023_1_4

II. Nadezhda N. Babikova Using NumPy to vectorization of Python code


Nadezhda N. Babikova – Pitirim Sorokin Syktyvkar State University, valmasha@mail.ru\


Abstrakt. Code vectorization is the process of moving from operations on individual elements of arrays to operations that occur on entire arrays or their parts. The NumPy library tools that allow to vectorize Python code are discussed in the article: vector functions, broadcasting, masking, fancy indexing. The effectiveness of these tools is demonstrated on the example of two machine learning problems.

Keywords: NumPy, Python, vectorization, multidimensional arrays, loops.


  1. Harris C. R., Millman K. J., van der Walt S. J. et al. Array programming with NumPy. Nature, 2020, no. 585. pp. 357–362. https://doi.org/10.1038/s41586-020-2649-2.
  2. NumPy documentation. Version: 1.25.dev0. Available at: https://numpy.org/devdocs/user/basics.copies.html (accessed: 07.02.2023).
  3. Ues Makkinli. Python i analiz dannyh / per. s angl. A. A. Slinkin [Python for data analysis] M.: DMK Press, 2015. 482 p.
  4. Plas Dzh. Vander. Python dlya slozhnyh zadach: nauka o dannyh i mashinnoe obuchenie [Python for complex tasks. Data Science and Machine Learning]. SPb.: Piter, 2018. 576 p. (In Russ.)
  5. Nicolas P. Rougier. From-python-to-numpy. Available at: https://www.labri.fr/perso/nrougier/from-python-to-numpy/#codevectorization (accessed: 07.02.2023).
  6. Shenoy A. How Are Convolutions Actually Performed Under the Hood. Available at: https://towardsdatascience.com/howare-convolutions-actually-performed-under-the-hood-226523ce7fbf (accessed: 07.02.2023).

For citation: Babikova N. N. Using NumPy to vectorization of Python code . Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 1 (46), pp. 14−29. https://doi.org/10.34130/1992-2752_2023_1_14

III. Yuriy V. Golchevskiy, Dmitriy A. Ushakov Cryptographic Calculations Acceleration by Low-Level Optimization of Basic Blocks


Yuriy V. Golchevskiy – Pitirim Sorokin Syktyvkar State University, yurygol@mail.ru

Dmitriy A. Ushakov – Pitirim Sorokin Syktyvkar State University


Abstract. Thе paper presents a study of optimizing the program code problem when implementing encryption algorithms. The basic blocks of the cryptographic algorithm are highlighted on the example of the Kuznechik algorithm. Implemented variants of the algorithm using different versions of vector instructions and their combinations have been tested on processors of various microarchitectures. Some developed algorithm implementation variants show a higher encryption speed than existing software products.

Keywords: cryptographic computing, low-level optimization, basic blocks, algorithm Kuznechik.


  1. Severin P. A., Golchevskiy Yu. V. Comprehensive Approach for Cryptographic Computation Acceleration. Informatsionnyye tekhnologii v upravlenii i ekonomike [Information technologies in management and economics]. 2012, no 2, pp. 36–39. (In Russ.)
  2. Golchevskiy Yu. V., Severin P. A. Cryptographic Algorithms Optimization by Means of Assembly Inserts in Integer Division. Izvestiya TulGU. Tekhnicheskiye nauki [News of TulGU. Technical sciences]. 2013, vol. 3, pp. 295–301. (In Russ.)
  3. Fast Stream Encryption. SecurityLab.ru. Available at:http://www.securitylab.ru/analytics/436620.php (accessed: 03.12.2022).
  4. Pavlov V. E., Udaltsov V. A. Optimizing the performance of block encryption algorithms. Prioritetnyye napravleniya razvitiya obrazovaniya i nauki [Priority directions of science and education development]. Cheboksary: SCC “Interaktiv plus LLC, 2017, 2(2), pp. 76–80. DOI: 10.21661/r-129822. (In Russ.)
  5. Features of national cryptography. SecurityLab.ru. Available at: http://www.securitylab.ru/analytics/480357.php (accessed: 03.12.2022). (In Russ.)
  6. Gashin R. A., Golchevskiy Yu. V. Development of Cryptographic Library Based on Algorithms from eSTREAM Project. Bezopasnost’ informatsionnykh tekhnologiy [Information Technology Security], 2015, no 4 (22), pp. 52–57. (In Russ.)
  7. Ischukova E. A., Koshutsky R. A., Babenko L. K. Development and implementation of high-speed data encryption using the Kuznechik algorithm. Auditorium, 2015, no 4 (8). (In Russ.)
  8. Code Optimization: CPU. Habrahabr. Available at: https://habrahabr.ru/post/309796/ (accessed: 03.12.2022). (In Russ.)
  9. Bryant R., Hallaron D. Computer Systems A Programmer’s Perspective. Printice Hall, 2015. 1120 p.
  10. Gerber R., Bik A. J. C., Smith K., Tian X. The Software Optimization Cookbook. St. Petersburg: Piter, 2010. 352 p. (In Russ.)
  11. Kunin R. Optimizatsiya Koda: pamyat’ [Code Optimization: Memory]. Available at: https://habrahabr.ru/post/312078/ (accessed: 03.12.2022). (In Russ.)
  12. Intel Instruction Set Extensions Technology. Available at: https://www.intel.com/content/www/us/en/support/articles/ 000005779/processors.html (accessed: 07.12.2022).
  13. Kireev S. E. Kalgin K. V. Effektivnoye programmirovaniye sovremennykh mikroprotsessorov i
    mul’tiprotsessorov [Efficient programming of modern microprocessors and multiprocessors]. Available at: https://ssd.sscc.ru/sites/default/files/content/attach/317/lecture2016
    _01_intro.pdf (accessed: 03.12.2022). (In Russ.)
  14. GOST R 34.12-2015 Informatsionnaya tekhnologiya. Kriptograficheskaya zashchita informatsii. Blochnyye shifry [GOST R 34.12-2015. Information technology. Cryptographic data security.
    Block ciphers]. (In Russ.)
  15. Intel 64 and IA-32 Architectures Software Developer Manuals. Available at: https://www.intel.com/content/www/us/en/developer/ articles/technical/intel-sdm.html (accessed: 07.12.2022).
  16. Intel 64 and IA-32 Architectures Optimization Reference Manual. Available at: https://cdrdv2-public.intel.com/671488/248966-046Asoftware-optimization-manual.pdf (accessed:07.02.2023).
  17. Intel SSE4 Programming Reference. Available at:https://www.intel.com/content/dam/develop/external/us/en/ documents/d9156103-705230.pdf (accessed: 07.02.2023).
  18. Intel Architecture Instruction Set Extensions Programming Reference. Available at: https://cdrdv2-public.intel.com/671368/architectureinstruction-set-extensions-programming-reference.pdf (accessed: 07.02.2023).
  19. GOST R 34.12 ’15 na SSE2, ili Ne tak uzh i plokh Kuznechik [GOST R 34.12 ’15 on SSE2, or Not So Bad Kuznechik]. Habrahabr. Available at: https://habrahabr.ru/post/312224/ (accessed: 03.12.2022). (In Russ.)
  20. Using the GNU Compiler Collection. GCC Online Documentation. Available at: https://gcc.gnu.org/onlinedocs/gcc.pdf (accessed: 03.12.2022).
  21. Intel C++ Compiler 19.1 Developer Guide and Reference. Intel Developer Zone. Available at:
    https://www.intel.com/content/www/us/en/develop/documentation/ cpp-compiler-developer-guide-and-reference/top.html (accessed: 07.12.2022).
  22. Fog A. Optimizing Subroutines In Assembly Language: An Optimization Guide For x86 Platforms. Available at: http://www.agner.org/optimize/optimizing_assembly.pdf (accessed:
  23. Kaspersky K. Tekhnika optimizatsii programm. Effektivnoye ispol’zovaniye pamyati [Program optimization technique. Efficient Memory Usage]. St. Petersburg, BHV-Petersburg, 2003. 464 p. (In Russ.)
  24. flat assembler 1.73 Programmer’s Manual | flat assembler. Available at: http://flatassembler.net/docs.php?article=manual (accessed: 03.12.2022).
  25. Golchevskiy Yu. V. Automation of Encryption Speed Optimization Research. Informatsionnyye tekhnologii v modelirovanii i upravlenii: podkhody, metody, resheniya : sbornik nauchnykh statey V Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiyem [Information technologies in modeling and management: approaches, methods, solutions: Collection of scientific articles: V All-Russian scientific conference with international participation]. Tolyatti: Publishing House of TSU, 2022, pp. 208–215. (In Russ.)
  26. Severin P. A., Golchevskiy Yu. V. Low-Level Performance Optimization on the Example of the Hash Function GOST R 34.11- Sistemnyy administrator [System Administrator]. 2017, no 1–2, pp. 170–171. (In Russ.)
  27. Ahmetzyanova L. R., Alekseev E. K., Oshkin I. B. et al. On the properties of the CTR encryption mode of the Magma and Kuznyechik block ciphers with re-keying method based on CryptoPro Key Meshing. IACR Cryptol. ePrint Arch., 2016, 628 p.
  28. Gafurov I. R. High-speed software implementation of encryption algorithms from GOST R 34.12-2015. Uchenyye zapiski UlGU. Seriya: Matematika i informatsionnyye tekhnologii [Scientific notes of UlGU. Series: Mathematics and Information Technology], 2022, no 2, pp. 38–(In Russ.)

For citation: Golchevskiy Yu. V., Ushakov D. A. Cryptographic Calculations Acceleration by Low-Level Optimization of Basic Blocks. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 1 (46), pp. 30−49. https://doi.org/10.34130/1992-2752_2023_1_30

Это изображение имеет пустой атрибут alt; его имя файла - hr.png

IV. Svetlana A. Deynega Components of Geometric-graphic Competence, Formed in the Study of Descriptive Geometry at a Technical University


Svetlana A. Deynega – Uсhta State Technical University, deynega07@mail.ru


Abstract. The article considers the generalized components of the professional competencies of students of a technical university. The significance of the formation of a cognitive and creative component at the initial stage of professional training is revealed. The possibilities of forming a cognitive and creative component of geometry and graphic competence in the study of descriptive geometry are shown.

Keywords: studying projective geometry, mathematical and graphic competence, technical education.


  1. Yakunin V. I., Guznenkov V. N. Geometric and graphic disciplines at the technical University. Teoriya i praktika obshchestvennogo razvitiya [Theory and practice of social development]. 2014, no 17, pp. 191–195. (In Russ.)
  2. Guznenkov V. N., Zhurbenko P. A. Model as a key concept of geometric-graphic training. Alma mater (Vestnik vysshei shkoly) [Alma mater (Bulletin of the Higher School)]. 2013, no 4, pp. 82–87. (In Russ.)
  3. Vyazankova V. V. Formation of graphic competence of bachelors of technical areas of training in the conditions of information and educational environment. Sovremennyye problemy nauki i obrazovaniya [Modern problems of science and education]. 2021, no 2. Available
    at: https://science-education.ru/ru/article/view?id=30663 (accessed: 03.03.2023). (In Russ.)
  4. Guznenkov V. N., Yakunin V.I., Seregin V.I. et al. Computer graphics – the basis of geometric-graphic training. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal [International Research Journal]. 2016, no 4 (46). Available at: https://research-journal.org/archive/4-
    46-2016-april/kompyuternaya-grafika-osnova-geometro-graficheskojpodgotovki (accessed: 07.03.2023). doi: 10.18454/IRJ.2016.46.298 (In Russ.)
  5. Savchenko E. V. Components of the information competence of the future engineer, formed in the study of fundamental disciplines. Sovremennoye obrazovaniye [Modern Education]. 2020, no 4, pp. 37–48. Available at: https://nbpublish.com/library_read_article.php?id=31606 (accessed: 07.03.2023). doi: 10.25136/2409-8736.2020.4.31606 (In Russ.)
  6. Kovalenko A. V. Graphic competence as one of the components of the professional competence of a bachelor of vocational training in the direction “051000.62 Vocational training (by industry)”. Vestnik YuUrGGPU [Bulletin of the SUSUGPU]. 2011, no 10, pp. 83– Available at: https://cyberleninka.ru/article/n/graficheskayakompetentsiya-kak-odna-iz-sostavlyayuschih-professionalnoykompetentnosti-bakalavra-professionalnogo-obucheniya-po/viewer (accessed: 09.03.2023). (In Russ.)
  7. Volkhin K. A., Leibov A. M. Problems of formation of graphic competence in the system of higher professional education. Filosofiya obrazovaniya [Philosophy of education]. 2012, no 4 (43), pp. 16–22.

For citation: Deynega S. A. Components of Geometric-graphic Competence, Formed in the Study of Descriptive Geometry at a Technical University. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 1 (46), pp. 50−63. https://doi.org/10.34130/1992 2752_2023_1_50

V. Sergej N. Dorofeev, Natalija V. Nazemnova Numerical sequences as a fundamental factor in the formation of creative activity in future bachelors


Sergej N. Dorofeev – Togliatti State University, komrad.dorofeev2010@yandex.ru

Natalija V. Nazemnova – Penza State University


Abstract. This article examines the problems of training engineering personnel for creative activity in the process of studying the basics of higher mathematics.

Keywords: mathematical education, continuity, fundamentality, quality of mathematical training, numerical sequences, integrals.


  1. Dorofeev S. N., Esetov E. N., Nazemnova N. V. Analogy as a basis for teaching schoolchildren the vector method of solving geometric problems. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Computer science]. 2021, issue 4 (41), pp. 69–79. (In Russ.)
  2. Menchinskaya N. A. Problemy obucheniya i psikhicheskogo razvitiya studentov [Problems of teaching and mental development of students]. M.: Pedagogy, 1989, 224 p. (In Russ.)
  3. Slepkan Z. I. Psikhologo-pedagogicheskiye osnovy prepodavaniya matematiki : metod.posobiye [Psychological and pedagogical foundations of teaching mathematics: method.stipend]. Kiev, 1983, 192 p. (In Russ.)
  4. Dorofeev S. N. Teoriya i praktika formirovaniya tvorcheskoy aktivnosti budushchikh uchiteley matematiki v pedagogicheskom vuze [Theory and practice of formation of creative activity of future teachers of mathematics at a pedagogical university, dissertation for the degree of Doctor of Pedagogical Sciences]. Penza, 2000. 410 p. (In Russ.)
  5. Dorofeev S. N., Ivanova T. A., Uteeva R. A. et al. Continuity in the preparation of future bachelors of pedagogical education (profile “Mathematics”) for creative activity. Gumanitarnyye nauki i obrazovaniye [Humanities and Education]. 2018, vol. 9, no 4 (36), pp. 25–30. (In Russ.)
  6. Dorofeev S. N. Competence-based approach to mathematical education of students of technical universities. Pedagogicheskoye obrazovaniye i nauka [Pedagogical education and science]. 2009, no 1, pp.88–91. (In Russ.)
  7. Dorofeev S. N. UDE as a method of preparing future bachelors of pedagogical education for professional activity. Gumanitarnyye nauki i obrazovaniye [Humanities and Education]. 2013, no 1, pp. 14–17. (In Russ.)
  8. Dorofeev S. N., Pavlov I. I., Shichiyakh R. F., Prikhodko A. N.Differentiated Training as a Form of Organization of Education fnd Cognitive Activity of Future Masters of Pedagogical Education. Applied Lingvistics Research Jounal, 2021, 5 (3), pp. 216–222.
  9. Dorofeev S. N., Shichiyach R. A., Khasimova L. N. Devoloping creative activity abilities of students in higer educaitional esteblishments. Rеvista оn line de politica e gistao educational. 2021, vol. 25, no S2, pp. 883–900.
  10. Friedman L. M. Psikhologo-pedagogicheskiye osnovy prepodavaniya matematiki v shkole: uchitel’ matematiki o pedagogicheskoy psikhologii [Psychological and pedagogical foundations of teaching mathematics at school: a teacher of mathematics about pedagogical psychology]. M.: Enlightenment, 1983, 160 p. (In Russ.)
  11. Talyzina N. F. Formation of mathematical concepts. Formirovaniye metodov matematicheskogo myshleniya [Formation of methods of mathematical thinking] / edited by N. F. Talyzina. M.: Lomonosov Moscow State University; Ventana-Graf LLP, 1995, pp. 13–28. (In Russ.)
  12. Ball G. A. Teoriya obrazovatel’nykh problem: psikhologopedagogicheskiy aspekt [Theory of educational problems: psychological and pedagogical aspect]. M.: Pedagogy, 1990. 184 p. (In Russ.)
  13. Zak A. Z. Kak opredelit’ uroven’ razvitiya myshleniya studenta [How to determine the level of development of a student’s thinking]. M.: Knowledge, 1982. 96 p. (In Russ.)
  14. Vygotsky L. S. Sobraniye sochineniy : v 6 t. T. 2. Problemy obshchey psikhologii / pod red. V. V. Davydova [Collected works: in 6 vols.Problems of general psychology / edited by V. V.Davydov]. M.: Pedagogika, 1982. 504 p.: ill. (In Russ.)
  15. Dorofeev S. N. Vysshaya matematika [Higher Mathematics]. M.: LLC “Publishing House “Mir i obrazovanie”” , 2011. 592 p.: ill. (In Russ.)
  16. Kudryavtsev L. D. Mysli o sovremennoy matematike i yeye izuchenii [Thoughts on modern mathematics and its study]. M.: Science, 1977, 123 p. (In Russ.)
  17. Vygotsky L. S. Sobraniye sochineniy : v 6 t. T. 3. Problemy razvitiya psikhiki / pod red. A. M. Matyushkina [Collected works: in 6 vols. 3. problems of the development of the psyche / edited by A. M. Matyushkin]. M.: Pedagogy, 1983. 368 p.: ill. (In Russ.)\

For citation: Deynega S. A. Components of Geometric-graphic Competence, Formed in the Study of Descriptive Geometry at a Technical University. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 1 (46), pp. 50−63. https://doi.org/10.34130/1992-2752_2023_1_50

VI. Vladimir P. Odinets On the works of three prewar mathematicians from Alma-Ata, Moscow, and Leningrad


Vladimir P. Odinets – W.P.Odyniec@mail.ru


Abstract. The article considers the works of three mathematicians: I. Akbergenov, specialist in Fredholm integral equations, a student of Professor L. Kantorovich, S. Arshon, specialist in combinatorics and function theory and Professor B. Izvekov, in the field of teaching higher mathematics, who lived accordingly, in Alma-Ata, Moscow and Leningrad and perished in 1938–1942.

Keywords: integral equations, Fredholm equation of second kind, Sarrus rule, combinatorial analysis, asymmetric sequence, vector analysis.


  1. Akbergenov Ibadulla. The National encyclopaedia. Almaty. Kazak encyclopedijasy, 2004. Vol. 1, p. 13. (In Russ.)
  2. Ahmetzhanova A. T. The fate of the academic – consequence of imperial policy of Soviet State. Vestnik KazNU [KazNU Bulletin]. Almaty, 2012, pp. 7–21. (In Russ.)
  3. Akbergtnov I. A. On the estimation of the mistake of the approximate solution of the Fredholm integral equation of a second kind by E. Nistrom method. Leningrad. Trudy 2-go Vsesouznogo Matematicheskogo s’ezda (1934). T. 2. Sekcionnye doklady [Proceedings of the 2nd All-Union Mathematical Congress. Vol. 2 (Sectional reports)], 1935, pp. 386–387. (In Russ.)
  4. Akbergenov I. A. Upon an approximate solution of the Fredholm integral equations and the determination of its eigenvalues. Mat. sb. [Mathematical collection], 1935, vol. 42. no 6, pp. 679–698. (In Russ.)
  5. Matematika v SSSR za sorok let 1917–1947. T. 2. Biobibliograph [Mathematics in the U.S.S.R. after forty years 1917–1957. Vol. 2. Biobibliography]. M.: Fizmatlit, 1959, 819 p. (In Russ.)
  6. Akbergenov I. A. Upon an approximate solution of the Fredholm Integral equations and the determination of its eigenvalues. Tashkent: Izd-vo Sredne-Aziatskogo universiteta, T.16, 1937, 48 p. (In Russ.)
  7. Arshon S. E. Victims of political terror in U.S.S.R. Arhivnoe delo: P- 48248 [Archival file: P-48248]. (In Russ.)
  8. Arshon S.E. Upon a method of combinatorial analysis. Trudy 2- go Vsesouznogo Mathematicheskogo s’ezda, 1934. T. 2. Sekcionnye doklady [Proceedings of the 2nd All-Union Mathematical Congress.Vol. 2 (Sectional reports)]. L.: Izd-vo AN U.S.S.R., 1935, pp. 24–(In Russ.)
  9. Arshon S. E. A generalization of the Sarrus rule. Mat. sb. [Mathematical collection], 1935, vol. 42, no 1, pp. 121–128. (In Russ.)
  10. Arshon S. E. A property of the arithmetic proportion. Mat. prosv. [Mathematical education], 1936, no 5, pp. 24–28. (In Russ.)
  11. Arshon S. E. A proof of the existence of n-valued infinite asymmetrical sequence. Mat. sbornik [Mathematical collection], 1937, vol. 44, no 4, pp. 769–779. (In Russ.)
  12. Kirsanov V. S. The books Destroyed: an echo by the Stalin’s terror in Soviet historical science. Sem’ iskustv [Seven arts], no 12. 05.01.(2015), pp. 21–34. (In Russ.)
  13. Balach-Izvekova T. B. Vospominaniya moyey zhizni [Memories of my life]. SPb.,2008 (Return). 171 p.; 2009 (Continuation). 114 p.; 2010 (Epilogue). 120 p. (In Russ.)
  14. Nauka i nauchnyye rabotniki v SSSR. Ch. V. Nauchnyye rabotniki Leningrada [Science and the scientific workers in the USSR. Part V. Scientific workers of Leningrad]. L.: Izd-vo AN U.S.S.R., 1934. 746 p. (In Russ.)
  15. Izvekov B. I. Osnovy vektornogo analiza [A basis of vector analysis]. L.: Izd-vo Kubuch, 1934, 176 p. (In Russ.)
  16. Izvekov B. I.. Sbornik zadach po prikladnoy matematike dlya studentov, aspirantov i prepodavateley vtuzov [A collection of problems in applied mathematics for students, past-graduate students and the instructors of higher technical education]. M., L.: Gos.technikoteoreticheskoe izd-vo, 1935. Part 1. 218 p. (In Russ.)\

For citation: Odinets V. P. On the works of three prewar mathematicians from Alma-Ata, Moscow, and Leningrad. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 1 (46), pp. 78−90. https://doi.org/10.34130/1992- 2752_2023_1_78

Leave a Comment