I. Беляева Н. А., Яковлева А.Ф. Фронтальная волна напорного течения
Строится неоднородное решение диффузионно-кинетического уравнения модели напорного течения структурированной жидкости в области немонотонности расходно-напорной характеристики. Решение соответствует гетероклинической траектории, соединяющей два устойчивых однородных состояния.
Ключевые слова: напорное течение, однородные равновесные состояния, гетероклиническая траектория, бегущая волна.
Список литературы:
1. Беляева Н. А., Сажина А. Н. Анализ усредненного напорного течения // Двадцать третья годичная сессия Ученого совета Сыктывкарского государственного университета имени Питирима Сорокина (Февральские чтения) : сборник материалов / отв.ред. Н. С. Сергиева. Сыктывкар: Изд–во СГУ им. Питирима Сорокина, 2016. C. 60–69.
2. Колмогоров А. Н., Петровский И. Г., Пискунов Н. С. Исследование уравнения диффузии, соединенной с возрастанием количества вещества, и его применение к одной биологической проблеме. М.: Бюл. МГУ. Секция А, 1937.
3. Холодниок М., Кулич А., Кубичек М., Марек М. Методы анализа нелинейных динамических моделей. М.: Мир, 1991. 368 c.
4. Худяев С. И. Пороговые явления в нелинейных уравнениях. М.: Физматлит, 2003. 272 с.
Для цитирования: Беляева Н. А., Яковлева А. Ф. Фронтальная волна напорного течения // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 3–12.
II. Михайлов А. В. О колебаниях кольца, подкрепленного нитями
Рассматриваются задачи о колебаниях упругих колец, подкрепленных упругими нитями; задачи об устойчивости упругих колец, находящихся под действием пульсирующей нагрузки.
Ключевые слова: кольцо, колебание, устойчивость, собственная частота, уравнение Эйлера – Остроградского, матрица монодромии, уравнение Матье.
Список литературы:
1. Абромовиц М., Стиган И. Справочник по специальным функциям, пер. с англ. под ред. В.А. Диткиной и Л.Н Кармазиной. М.: Наука, 1979. 832 с.
2. Вольмир А. С. Устойчивость деформируемых систем. М.: Наука, 1967. 984 с.
3. Гельфанд И. М., Фомин С .В. Вариационное исчисление. М.: Гос. изд-во физ.-матем. литературы, 1961. 228 с.
4. Лерман Л. М. Линейные дифференциальные уравнения и системы. Н. Новгород: Нижегородский госуниверситет, 2012. 89 с.
5. Мэтьюз Дж., Уокер Р. Математические методы в физике : пер. с англ. М.: Атомиздат, 1972. 392 с.
6. Пановко Я. Г. Основы прикладной теории упругих колебаний. М.: Машиностроение, 1967. 318 с.
7. Тарасов В. Н. Методы оптимизации в исследовании конструктивно-нелинейных задач механики упругих систем. Сыктывкар: КНЦ УрО РАН, 2013. 238 с. 8. Улам С. Нерешенные математические задачи / пер. с англ. З.Я. Шапиро. М.: Наука, 1964. 168 с. 9. Фадеев Л. Д., Якубовский О. А. Лекции по квантовой механике для студентов-математиков : учеб. пособие Л.: Изд-во Ленингр. унта, 1980. 200 с.
Для цитирования: Михайлов А. В. О колебаниях кольца, подкрепленного нитями // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 13–28.
III. Пименов Р. Р. Трактовки теорем Паппа: перпендикулярность и инволютивность
Дорисовав к чертежу проекции стрелки, мы увидим инволютивное преобразование. Геометрические чертежи превращаются в диаграммы инволюций и их композиций. Это упрощает понимание и работу с известными теоремами, а при обобщении на многомерные пространства легко связывает геометрию сфер с проективным пространством и неевклидовыми геометриями. Если к теореме Паппа применить геометрию перпендикулярного и вместо слова инцидентность использовать слово перпендикулярность, мы получим истинные и содержательные геометрические утверждения.
Ключевые слова: теорема Паппа – Паскаля, инволютивность, перпендикулярность, проективная геометрия, инверсия.
Список литературы:
1. Бахман Ф. Построение геометрии на основе понятия симметрии / пер. с нем. Р. И. Пименова; под ред. И. М. Яглома. М.: Наука, 1969. 380 с.
2. Пименов Р. Р. Обобщения теоремы Дезарга: геометрия перпендикулярного // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 28–43.
3. Пименов Р. Р. Обобщения теоремы Дезарга: скрытые пространства // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2016. Вып. 1 (21). C. 44–57.
4. Пименов Р. Р. Отображения сферы и неевклидовы геометрии // Математическое просвещение. 1999. Cер. 3. Bып. 3. C. 158–166.
5. Пименов Р. Р. Эстетическая геометрия или теория симметрий. СПб.: Школьная лига, 2014. 288 с.
6. Харстсхорн Р. Основы проективной геометрии / пер. с англ. Е. Б. Шабат; под ред. И. М. Яглома. M: Мир, 1970.
7. Tabachnikov S. Skewers // Arnold Mathematical Journal. 2. 2016. Pp. 171–193.
Для цитирования: Пименов Р. Р. Трактовки теорем Паппа: перпендикулярность и инволютивность // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 29–45.
IV. Макаров П. А. О вариационных принципах механики консервативных и неконсервативных систем
На основе принципа Гамильтона – Остроградского, применённого к движению консервативных и неконсервативных систем, составлены однородные и неоднородные уравнения Эйлера—Лагранжа. Рассмотрен пример плоского движения материальной точки. Определено влияние диссипативных сил на характеристики движения.
Ключевые слова: механическое действие по Гамильтону, вариационные принципы движения, уравнение Эйлера – Лагранжа, прямой и окольный путь, диссипация энергии.
Список литературы:
1. Веретенников В. Г., Синицин В. А. Метод переменного действия. 2-е изд., исправ. и доп. М.: ФИЗМАТЛИТ, 2005. 272 c.
2. Веретенников В. Г., Синицин В. А. Теоретическая механика (дополнения к общим разделам). М.: ФИЗМАТЛИТ, 2006. 416 c.
3. Гантмахер Ф. Р. Лекции по аналитической механике. 2-е. изд., исправ. М.: Наука, 1966. 300 с.
4. Голдстейн Г. Классическая механика. М.: Наука, 1975. 416 c.
5. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика : учеб. пос.: в 10 т. Т.I. Механика. 5-е изд., стереот. М.: ФИЗМАТЛИТ, 2007. 224 c.
6. Слудский Ф. А. Заметка о начале наименьшего действия // Вариационные принципы механики / под ред. Л. С. Полака М.: Физматгиз, 1959. C. 388–391.
Для цитирования: Макаров П. А. О вариационных принципах механики консервативных и неконсервативных систем // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 46–59.
V. Одинец В. П. Зенон Иванович Боревич (1922– 1995) (К 95-й годовщине со дня рождения)
Статья посвящена биографии известного алгебраиста профессора Зенона Ивановича Боревича, декана математико-механического факультета Ленинградского государственного университета в 1973–83 годы, увиденной со стороны польских математиков, а также контактам З.И. Боревича с Польшей с подробными комментариями автора.
Ключевые слова: З.И. Боревич, блокада Ленинграда, гомологическая алгебра, теория линейных групп, общество «Полония».
Список литературы:
1. Narkiewicz W., Wie¸slaw W. ZenonBorewicz (1922–1995) // Wiadomo´sciMatematyczne. XXXVI. 2000. S. 65–72.
2. Odyniec W. P. O matematykach Leningradu // Wiadomo´sci Matematyczne. XXVII. 1987. S. 279–292.
3. Odyniec W. P. O matematykach Leningradu (Sankt-Petersburga) i nie tylko — 10 lat po´z˙niej // Wiadomo´sci Matematyczne. XXXIV. 1998. S. 149–158.
4. Яковлев А. В. Зенон Иванович Боревич. Вопросы теории представлений алгебр и групп. 5 // Записки научных семинаров ПОМИ. T. 236. 1997. C. 9–12.
Для цитирования: Одинец В. П. Зенон Иванович Боревич (1922– 1995) (К 95-й годовщине со дня рождения) // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 60–69.
VI. Лубягина Е. Н., Тимшина Л. В. Опыт организации учебно-исследовательской деятельности студентов при изучении кривых второго порядка
В статье предлагаются материалы, которые можно использовать для организации учебно-исследовательской деятельности студентов при изучении кривых второго порядка. Приводятся примеры использования среды GeoGebra.
Ключевые слова: исследовательская деятельность, кривые второго порядка, GeoGebra.
Список литературы:
1. Акопян А. В., Заславский А. А. Геометрические свойства кривых второго порядка. М.: МЦНМО, 2007. 136 с.
2. Атанасян Л. С., Атанасян В. А. Сборник задач по геометрии : учебное пособие для студентов физ.-мат. фак. пед. ин-тов. М.: Просвещение, 1973. Ч. I. 480 c.
3. Безумова О. Л., Овчинникова Р. П., Троицкая О. Н., Троицкий А. Г., Форкунова Л. В., Шабанова М. В., Широкова Т. С., Томилова О. М. Обучение геометрии с использованием возможностей GeoGebra. Архангельск: Кира, 2011. 140 с.
4. Болтянский В. Г. Огибающая // Квант. № 3. 1987. C. 2–7.
5. Вечтомов Е. М., Лубягина Е. Н. Геометрические основы компьютерной графики : учебное пособие. Киров: Изд-во ООО «РадугаПРЕСС», 2015. 164 с.
6. Гурова А. Э. Замечательные кривые вокруг нас. М., 1989. 112 c.
7. Забелина С. Б. Формирование исследовательской компетентности магистрантов математического образования (направление «педагогическое образование») :дис. … канд. пед. наук. М., 2015.
8. Качалова Л. П. Исследовательская компетенция магистрантов: структурно-содержательный анализ // Политематический журнал научных публикаций «Дискуссия». Вып. №3(55). 2015.
9. Руинский А. Инверсные преобразования гиперболы // Матем. просв., сер. 3, 4 (2000). С. 120–126.
10. Смирнов В. И. Курс высшей математики. М.: Наука, 1974. Т. 2. 479 с.
11. Тимшина Л. В. Семинарские занятия по геометрии в вузе // Преподавание математики, физики, информатики в вузах и школах: проблемы содержания, технологии и методики : материалы V Всероссийской науч.-практ. конф. Глазов: ООО «Глазовская типография», 2015. С. 131–133.
12. Чеботарева Э. В. Компьютерный эксперимент с GeoGebra. Казань: Казанский ун-т, 2015. 61 с.
13. Шабанова М. В., Овчинникова Р. П., Ястребов А. В., Павлова М. А., Томилова А. Е., Форкунова Л. В., Удовенко Л.Н., Новоселова Н. Н., Фомина Н. И., Артемьева М. В., Ширикова Т. С., Безумова О. Л., Котова С. Н., Паршева В. В., Патронова Н. Н., Белорукова М. В., Тепляков В. В., Рогушина Т. П., Тархов Е. А., Троицкая О. Н., Чиркова Л. Н. Экспериментальная математика в школе. Исследовательское обучение : монография по исследовательской деятельности. М.: Издательский дом «Академия Естествознания», 2016. 300 с.
14. Ширикова Т. С. Методика обучения учащихся основной школы доказательству теорем при изучении геометрии с использованием GeoGebra :дис. … канд. пед. наук. Архангельск, 2014. 15. Яглом И. М., Ашкинузе В. Г. Идеи и методы аффинной и проективной геометрии. М. 1962. Ч. I. 247 c.
Для цитирования:Лубягина Е. Н., Тимшина Л. В. Опыт организации учебно-исследовательской деятельности студентов при изучении кривых второго порядка // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 70–84.
VII. Ермоленко А. В., Осипов К. С. Параллельное программирование в контактных задачах со свободной границей
Метод обобщенной реакции при расчете контактных задач со свободной границей требует большого количества итераций, на каждой из которых проводится много вычислений. Для ускорения расчетов в статье рассматривается распараллеливание одной контактной задачи с помощью технологии OpenMP на языке C++.
Ключевые слова: пластина, метод обобщенной реакции, контактная задача, параллельные вычисления.
Список литературы:
1. Антонов А. С. Параллельное программирование с использованием технологии OpenMP. М.: Изд-во МГУ, 2009. 77 с.
2. Ермоленко А. В., Гинтнер А. Н. Влияние поперечных сдвигов на понижение напряженного состояния пластины. Теория изгиба пластин типа Кармана без гипотез Кирхгофа // Вестник Сыктывкарского университета. Сер. 1. Математика. Механика. Информатика. Вып. 1 (20). 2015. С. 91–96.
3. Ермоленко А. В. Теория плоских пластин типа Кармана – Тимошенко – Нагди относительно произвольной базовой плоскости // В мире научных открытий. Красноярск: НИЦ, 2011. №8.1 (20). C. 336–347.
4. Михайловский Е. И., Ермоленко А. В., Миронов В. В., Тулубенская Е. В. Уточненные нелинейные уравнения в неклассических задачах механики оболочек. Сыктывкар: Изд-во Сыктывкарского университета, 2009. 141 с.
5. Михайловский Е. И., Тарасов В. Н. О сходимости метода обобщенной реакции в контактных задачах со свободной границей // РАН. ПММ. 1993. Т. 57. Вып. 1. С. 128–136.
Для цитирования: Ермоленко А. В., Осипов К. С. Параллельное программирование в контактных задачах со свободной границей // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 85–91.
VIII. Чупраков Д. В., Ведерникова А. В. О структуре конечных циклических полуколец с идемпотентным коммутативным сложением
Статья посвящена исследованию конечных идемпотентных циклических полуколец с коммутативным сложением. Авторами установлен критерий существования конечного идемпотентного циклического полукольца с коммутативным сложением, заданного идеалом целых неотрицательных чисел, получены оценки числа элементов КИЦП. Сформулированы алгоритмы вычисления числа элементов по образующим ассоциированного идеала целых неотрицательных чисел.
Ключевые слова: полукольцо, циклическое полукольцо, идемпотент, идеал, натуральное число.
Список литературы:
1. Бестужев А.С. Конечные идемпотентные циклические полукольца // Математический вестник педвузов и университетов Волго-Вятского региона. 2011. Вып. 13. С. 71–78.
2. Бестужев А.С. Вечтомов Е.М. Циклические полукольца с коммутативным сложением // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2015. Вып. 20. С. 8–39.
3. Ведерникова А.В., Чупраков Д.В. О представлении конечных идемпотентных циклических полуколец кортежами целых чисел // Математический вестник педвузов и университетов Волго-Вятского региона. 2017. Вып. 19. С. 70–76.
4. Вечтомов Е.М. Введение в полукольца. Киров: ВГПУ, 2000. 44 с.
5. Вечтомов E.М., Лубягина (Орлова) И.В. Циклические полукольца с идемпотентным некоммутативным сложением // Фундаментальная и прикладная математика. 2012. Т. 17. Вып. 1. C. 33–52.
6. Вечтомов E.М., Орлова И.В. Циклические полукольца с неидемпотентным некоммутативным сложением // Фундаментальная и прикладная математика. 2015. Т. 20. № 6. C. 17–41.
7. Вечтомов Е.М. Мультипликативно циклические полукольца // Технологии продуктивного обучения математике: традиции и новации. Арзамас: Арзамасский филиал ННГУ, 2016. С. 130–140.
8. Вечтомов E.М., Орлова И.В. Идеалы и конгруэнции циклических полуколец // Вестник Сыктывкарского университета. Сер.1: Математика. Механика. Информатика. 2017. Вып. 1(22). C. 29–40.
9. Лубягина И.В. О циклических полукольцах с некоммутативным сложением // Труды Математического центра им. Н.И. Лобачевского. Казань: Издательство Казанского математического общества, 2010. T. 40. C. 212–215.
10. Ноден П., Китте К. Алгебраическая алгоритмика с упражнениями и решениями. М.: Мир, 1999. 720 с.
11. Чермных В.В., Николаева О.В. Об идеалах полукольца натуральных чисел // Математический вестник педвузов и университетов Волго-Вятского региона. 2009. Вып. 11. С. 118–121.
12. Bestugev A.S., Vechtomov E.M. Multiplicativelycyclicsemirings // XIII Международная научная конференция им. Академика М. Кравчука. Киев: Национальный технический университет Украины, 2010. С. 39.
Для цитирования: Чупраков Д. В., Ведерникова А. В. О структуре конечных циклических полуколец с идемпотентным коммутативным сложением // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2017. Вып. 2 (23). C. 92–109.