I. Some features of production angles of particles born in decay reactions in relativistic and nonrelativistic cases
https://doi.org/10.34130/1992-2752_2023_4_4
Pavel A. Makarov – Institute of Physics and Mathematics, Federal Research Centre Komi Science Centre, Ural Branch, RAS, makarovpa@ipm.komisc.ru
Abstract. On the basis of kinematic approach some features of production angles of particles born in decay processes are studied. Statement and theorems describing the kinematics of decay reactions in the nonrelativistic and relativistic cases are formulated and proved. Corollaries allowing to determine the maximum of production angles of born particles are obtained and analyzed.
Keywords: decay, kinematics, conservation laws, production angles, Lorentz transformations
References
- Shirokov Y. M., Yudin N. P. Yadernaya fizika [Nuclear physics]. Moscow: Nauka, 1980. 728 p. (In Russ.)
- Naumov A. I. Fizika atomnogo yadra i elementarnykh chastits [Physics of atomic nucleus and elementary particles]. Moscow: Prosveshenie, 1984. 384 p. (In Russ.)
- Hofmann S., et al. Proton radioactivity of 151Lu. Z Physik A. 1982. Vol. 305. Pp. 111–123.
- Giovinazzo J., et al. Two-Proton Radioactivity of 45Fe. Phys. Rev. Lett. 2002. Vol. 89. No 10. Art. N. 102501.
- Pf¨utzner M., et al. First evidence for the two-proton decay of 45Fe. Eur Phys J A. 2002. Vol. 14. Pp. 279–285.
- Rose H. J., Jones G. A. A new kind of natural radioactivity. Nature. Vol. 307. Pp. 245–247.
- Alexandrov D. V. et al.Observation of spontaneous departure of 14C nuclei from 223Ra. Pis’ma v ZHETF [Writings in ZhETF]. 1984. Vol. 40. Pp. 152–154. (In Russ.)
- Oganesyan Yu. Ts., Penionzhkevich Y. E., Grigoriev V. A. Fizika tyazhelykh ionov i yeye prilozheniya [Physics of heavy ions and its applications]. Dubna: JINR, 2021. 363 p. (In Russ.)
- Nelipa N. F. Fizika elementarnykh chastits [Physics of elementary particles]. Moscow: Vysshaya shkola, 1977. 608 p. (In Russ.)
- Particle Data Group. Review of Particle Physics. Progress of Theoretical and Experimental Physics. 2022. Vol. 2022. No 8. Art. N. 083C01.
- Baldin A. M. et al Kinematika yadernykh reaktsiy [Kinematics of nuclear reactions]. 2nd ed., rev. and supplement. Moscow: Atomizdat, 456 p. (In Russ.)
- ATLAS Collaboration, Aad G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 2012. Vol. 716. Pp. 1–29.
- CMS collaboration, Chatrchyan S. et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B. 2012. Vol. 716. Pp. 30–61.
- CMS collaboration, Tumasyan A. et al. Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at √ s = 13 TeV. J. High Energ. Phys. 2023. Issue 5. No 233
- ATLAS Collaboration, Aad G. et al. Searches for exclusive Higgs and Z boson decays into a vector quarkonium state and a photon using 139 fb−1 of ATLAS √ s = 13 TeV proton-proton collision data. The European Physical Journal C. 2023. Vol. 83. No 9. Art. N. 781.
- Landau L. D., Lifshits E. M. Teoreticheskaya fizika. T. II. Teoriya polya [Theoretical physics. V. II. Field theory]. Moscow: FIZMATLIT, 536 p. (In Russ.)
- Landau L. D., Lifshits E. M. Theoretical physics. V. IV. Berestetsky V. B., Lifshits E. M., Pitaevsky L. P. Kvantovaya elektrodinamika [Quantum electrodynamics]. Moscow: FIZMATLIT,720 p. (In Russ.)
- Landau L. D., Lifshits E. M. Teoreticheskaya fizika. T. I. Mekhanika [Theoretical physics. V. I. Mechanics]. Moscow: FIZMATLIT, 2007. 224 p. (In Russ.)
II. Analysis of data on forest fires in the Komi Republic using Excel and Python
https://doi.org/10.34130/1992-2752_2023_4_29
Nadezhda N. Babikova – Pitirim Sorokin Syktyvkar State University
Nadezhda O. Kotelina – Pitirim Sorokin Syktyvkar State University
Fyodor N. Tentyukov – Pitirim Sorokin Syktyvkar State University
Abstract. The article presents the results of data analysis on forest fires in the Komi Republic for 2010–2023. The study was carried out using the Excel spreadsheet processor and Python libraries: Scikit-learn, Pandas, Numpy, Openpyxl, Folium.
Keywords: data analysis, Python, k-means clustering, DBSCAN clustering, forest fires
References
- Kolerov D. A. Improving methods for monitoring and responding to forest fires in the Komi Republic (using the example of artificial intelligence). OBZH: Osnovy bezopasnosti zhizni [FLS. Fundamentals of Life Safety]. 2022. No 1. Pp. 56–59. (In Russ.)
- Volokitina A. V., Sofronova T. M., Korec M. A. Regional Scales of Fire Danger Rating in the Forest: Improved Technique. Sibirskij lesnoj zhurnal [Siberian Journal of Forest Science]. 2017. No 2. Pp. 52–61. DOI: 10.15372/SJFS20170206. (In Russ.)
- Geoinformatsionnyy portal Respubliki Komi [Geoinformation portal of the Komi Republic] [Electronic resource]. Available at: https://gis.rkomi.ru/ (accessed: 11.11.2023). (In Russ.)
- Kotelina N. O., Matvijchuk B. R. Image clustering by the k-means method. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of the Syktyvkar University. Ser. 1: Math. Mechanics. Informatics]. 2019. No 3 (32). Pp. 101–112. (In Russ.)
- Scikit-learn documentation [Electronic resource]. Available at: https://scikit-learn.org/stable/modules/clustering.html#hdbscan (accessed: 11.11.2023).
- Anisimov O. A., Borsch S. V., Georgievsky V. Yu. et al. Metody ocenki posledstvij izmeneniya klimata dlya fizicheskih i biologicheskih sistem [Methods for assessing the effects of climate change on physical and biological systems]. Institute of Global Climate and Ecology of the
Federal Service for Hydrometeorology and Environmental Monitoring and the Russian Academy of Sciences. Moscow: Scientific Research Center of Space Hydrometeorology «Planet», 2012. 512 p. (In Russ.)
For citation: Babikova N. N., Kotelina N. O., Tentyukov F. N. Analysis of data on forest fires in the Komi Republic using Excel and Python. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 4 (49), pp. 29−46. (In Russ.) https://doi.org/10.34130/1992-2752_2023_4_29
III. Introduction to the theory of mathematical modeling when teaching students
https://doi.org/10.34130/1992-2752_2023_4_47
Andrey V. Yermolenko – Pitirim Sorokin Syktyvkar State University, ea74@list.ru
Abstract. The article discusses the issues of introducing students to mathematical modeling in junior years. Ways of getting to know each other through individual training, instilling interest through historical and philosophical excursions, and familiarization with mathematical modeling in fundamental disciplines are proposed.
Keywords: numerical methods, training of scientific personnel, Lotka-Voltaire model, mathematical modeling
References
- Mikhailovskii E. I. Shkola mekhaniki obolochek akademika Novozhilova [Academic Novozhilov’s school of mechanics of shells]. Syktyvkar: Publishing House of Syktyvkar University, 2005. 172 p. (In Russ.)
- Mikhailovskii E.I., Yermolenko A.V., Mironov V.V., Tulubenskaya E.V. Utochnennye nelinejnye uravneniya v neklassicheskih zadachah mekhaniki obolochek : uchebnoe posobie
[Refined nonlinear equations in non-classical tasks of mechanics of shells]. Syktyvkar: Publishing House of Syktyvkar University, 2009. 141 p. (In Russ.) - Yermolenko A. V. Classical contact problems with free boundary. Problemy matematicheskogo obrazovaniya v vuzah i shkolah Rossii v usloviyah ego modernizacii: IV Vserossijskaya nauchno–metodicheskaya konferenciya : sbornik materialov [Problems of mathematical education in universities and schools of Russia in the context of its modernization:
IV All-Russian Scientific and Methodological Conference: collection of materials]. Syktyvkar: Publishing house of Syktyvkar University, 2014. Pp. 160–167. (In Russ.) - Fokin R. R., Atoyan A. A., Abissova M. A. Studying mathematics, computer science, mathematical and information modeling: ways to increase student motivation. Nauchnyj al’manah [Scientific almanac]. 2022. No 1–1 (87). Pp. 111–114. (In Russ.)
- Zharkova YU. S. Teaching elements of mathematical modeling at a pedagogical university as a means of developing professional competencies. Vestnik Chelyabinskogo gosudarstvennogo
pedagogicheskogo universiteta [Bulletin of Chelyabinsk State Pedagogical University]. 2014. No 9–1. Pp. 85–93. (In Russ.) - Aslanov R. M., Sushkov V. V. Historical ways of emergence and development of complex analysis. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics]. 2022.
No 3 (44). Pp. 47–63. (In Russ.) - Studenty SGU im. Pitirima Sorokina – stipendiaty Prezidenta i Pravitel’stva Rossii [Students of SSU named after Pitirim Sorokina – scholarship recipients of the President and Government of Russia] [Electronic resource]. Available at: https://www.syktsu.ru/news/17286/
(accessed: 21.11.2023). (In Russ.) - Yermolenko A. V., Osipov K. S. On using Python libraries to calculate plates. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics]. 2019. 4 (33). Pp. 86–95.
(In Russ.) - Yermolenko A. V., Lotockaya S. R. Numerical solution of the problem “Predator – prey”. Aktual’nye voprosy sovremennoj nauki : Sbornik nauchnyh statej po materialam III Mezhdunarodnoj nauchnoprakticheskoj konferencii (21 noyabrya 2023 g., g. Ufa) : v 3 ch. [Current issues of modern science: Collection of scientific articles based on the materials of the III International Scientific and Practical Conference (November 21, 2023, Ufa) : in 3 parts]. Ufa: Publishing house. Scientific Research Center Bulletin of Science, 2023. Part 1. Pp. 11–16. (In Russ.)
- Fokin R. R., Atoyan A. A., Abissova M. A. On motivation to study disciplines from higher education fields of mathematics, computer science, mathematical and information modeling. Sovremennye naukoemkie tekhnologii [Modern high technology]. 2017. No 2. Pp. 172– (In Russ.)
- Popov N. I., Adiganova N. A. About one mathematical model of the biological problem “predator – prey”. Vestnik MGPU “Estestvennye nauki” [Bulletin of MSPU “Natural Sciences”]. 2017. No 4 (28). Pp. 119–(In Russ.)
For citation: Yermolenko A. V. Introduction to the theory of mathematical modeling when teaching students. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics],
2023, no 4 (49), pp. 47−58. (In Russ.) https://doi.org/10.34130/1992- 2752_2023_4_47
IV. Semantic aspects in the methods of math teaching
https://doi.org/10.34130/1992-2752_2023_4_59
Olga A. Sotnikova – Pitirim Sorokin Syktyvkar State University, sotnikovaoa@syktsu.ru
Abstract. The article features the analysis of methodology of mathematics in relation to the semantics of mathematical matter. The author’s assumptions are based on the need to gain
understanding in learning mathematics. It is justified that semantic aspects of teaching math involve establishing meaningful connections within mathematical matter.
Keywords: understanding mathematics in teaching, meaningful connections, comprehension of mathematical concepts
References
- Bibler V. S. Ot naukoucheniya – k logike kul’tury: Dva filosofskikh vvedeniya v dvadtsat’ pervyy vek [From science studies to the logic of culture: Two philosophical introductions to the twenty-first century] [Electronic resource]. Available at: https://platona.net/load/ knigi_po_filosofii/kulturologija/bibler_v_s_ot_naukouchenija_k_ logike_kultury_ dva_filosofskikh vvedenija_v_dvadcat_pervyj vek/16-1-0-1042 (accessed: 28.11.2023). (In Russ.)
- Doblaev V. P. Smyslovaya struktura uchebnogo teksta i problemy ego ponimaniya [The semantic structure of the educational text and the problems of its understanding]. Moscow: Pedagogy, 1982. 176 p. (In Russ.)
- Ruzavin G. I. Understanding as a complex methodological problem. Problemy ob”yasneniya i ponimaniya v nauchnom poznanii : sb. st. [Problems of explanation and understanding in scientific cognition : digest of articles]. USSR Academy of Sciences, Institute of Philosophy;
answer ed. G. I. Ruzavin. Moscow: Institute of Philosophy, 1982. Pp. 1– (In Russ.) - Zinchenko V. P. Psihologicheskie osnovy pedagogiki [Psychological foundations of pedagogy]. Moscow: Gardariki, 2002. 431 p. (In Russ.)
- Frege G. Smysl i znacheniye [Meaning and significance] [Electronic resource]. Available at: https://kant.narod.ru/frege1.htm (accessed: 12.11.2023) (In Russ.)
- Cherch A. Vvedenie v matematicheskuyu logiku [Introduction to Mathematical Logic]. Moscow: Izdvo foreign. lit., 1960. 485 p. (In Russ.)
- Mader V. V. Vvedeniye v metodologiyu matematiki [Introduction to the methodology of mathematics] [Electronic resource]. Available at: https://fileskachat.com/view/
42260_f37ce0eec2526c065cec09140f140be3.html (accessed: 03.10.2023) (In Russ.) - Shafarevich I. R. Osnovnye ponyatiya algebry [Basic concepts of algebra]. Izhevsk: Izhevsk Republican Printing House, 1999. 348 p. (In Russ.)
- Vechtomov E. M. Metafizika matematiki [Metaphysics of Mathematics]. Kirov: Izd-v VyatGGU, 2006. 508 p. (In Russ.)
- Vejl’ G. Matematicheskoe myshlenie [Mathematical thinking]. Moscow: Nauka, 1989. 400 p. (In Russ.)
For citation: Sotnikova O. A. Semantic aspects in the methods of math teaching. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika [Bulletin of Syktyvkar University, Series 1: Mathematics. Mechanics. Informatics], 2023, no 4 (49), pp. 59−69. (In Russ.) https://doi.org/10.34130/1992-2752_2023_4_59
V. On the works of the mathematician, defender of Moscow, Korean Shin Deng Yun (1912–1942)
https://doi.org/10.34130/1992-2752_2023_4_70
Vladimir P. Odinets – W.P.Odyniec@mail.ru
Abstract. The article discusses the works on quasi-differential equations and quasi-differential operators in the Hilbert space by Korean Shin Deng Yun (1912–1942), post-graduate student at the Faculty of Mechanics and Mathematics of Moscow State University.
Keywords: quasi-differential equations, quasi-differential operators, Hilbert space, linearly independent Solutions, defense of Moscow
References
- Matematika v SSSR za sorok let 1917–1957. T. 2. Biobibliografiya [Mathematics in the USSR for Forty Years 1917–1957. Bd. 2. Biobibliography]. Moscow: Fizmatlit, 1959. 819 p.
- Shin Deng Yun. Oscillation theorems of boundary problems of a self-adjoint differential system of the 4th order. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1938. 18. No 6. Pp. 323–324. (In Russ.)
- Shin Deng Yun. Theorems for the existence of a quasi-differential equation of the nth order. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1938. 18. No 8. Pp. 515–518. (In Russ.)
- Shin Deng Yun. Solutions of a self-adjoint differential equation u[n] = lu, I(l) 6= 0, belonging to L2(0, ∞). Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1938. 18. No 8. Pp. 519–522. (In Russ.)
- Odyniec V. P. О Leningradskih matematikah, pogibshih v 1941–1944 godah. II [About Leningrad mathematicians, who died in 1941–1944. II]. Syktyvkar: Izd-vo SGU named after Pitirim Sorokin, 2021. 108 p.
- Janchevski S. Oscillation theorem for the differential boundary value problem of the fourth order. Ann. of Math. 1927–1928. 29. Pp. 521– 542.
- Janchevski S. Oscillation theorem for the differential boundary value problem of the fourth order. Ann. of Math. 1930. 31. Pp. 663–680.
- Shin Deng Yun. Solutions of a linear quasi-differential equation of nth order. Matem. sb. [Mathematical collection]. 1940. 7(49). Pp. 479– (In Russ.)
- Matematika v SSSR za tridcat’ let 1917–1947 [Mathematics in the USSR for Thirty Years 1917–1947]. Edited by A. G. Kurosh,A. I. Markushevich, P. K. Rashevsky. M.; L.: OGIZ, Izd-vo tekhn.-
teor. litters, 1948. 1045 p. - Shin Deng Yun. Quasi-differential operators in Hilbert space. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. No 8. Pp. 523–526. (In Russ.)
- Shin Deng Yun. Solutions of the System of Quasi-Differential Equations. Doklady AN USSR [Reports of the Academy of Sciences of the USSR]. 1940. 28. No 5. Pp. 392–395. (In Russ.)
- Nikolsky S. M. Vospominaniya [Memories]. Moscow: Izd-vo MIAN,160 p.
- Shin Deng Yun. Quasi-differential operators in Hilbert space. Matem. sb. [Mathematical collection]. 1943. 13 (55). Pp. 39–70. (In Russ.)