Bulletin 2 (31) 2019

Issue 2 (31) 2019

I. Beznosov A. O., Ustyugov V. A. Development of the software for nanocomposite films granulometric analysis

Text

The article discusses the mathematical foundations of the image clustering procedure, which allows splitting the original image into sections, selected according to the principle of similarity of their elements. The agglomerative hierarchical clustering method is described. A software package was developed for clustering AFM images of nanogranular films, and the results of various parts of the algorithm are presented.

Keywords: atomic force microscopy, nanogranulated film, clustering.

References

  1. machinelearning.ru Klasterizatsiya ― [Web-page]. ― URL: machinelearning.ru/wiki/index.php?title=Klasterizatsiya (date of the application: 09.01.2019).
  2. aiportal.ru ― Mera rasstoyaniya [Web-page]. URL:http://www.aiportal.ru/articles/autoclassification/measure-distance.html (date of the application: 17.05.2019).
  3. scipy.org ― SciPy [Web-page]. ― URL: https://www.scipy.org/ (date of the application: 25.05.2019).
  4. scikit-learn.org ― sklearn.cluster.AgglomerativeClustering [Web-page]. ― URL: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.Agglomerative Clustering.fit (date of the application: 11.01.2019).

For citation: Beznosov A. O., Ustyugov V. A. Development of the software for nanocomposite fims granulometric analysis, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2019, 2 (31), pp. 3 ― 17.

II. Maslyaev D. A. About the semiring of the Laurent skew polynomials and the expansion of Jordan

Text

The article shows that the study of semirings of Laurent skew polynomials is reduced to the case when endomorphism is an automorphism. Namely, let φ be the injective endomorphism of the semiring S. Then we construct the extension Sφof the semiring S and the auto morphism φ¯ of the semiring S, which is a continuation of the original endomorphism of φ. It is shown that semirings of Laurent skew polynomials S[x1, x, φ] and Sφ[x1, x, φ¯] are isomorphic.

Keywords: semiring of Laurent skew polynomials, extension of Jordan.

References

  1. Jordan D. A. Bijective extensions of injective ring endomorphisms, J. London Math. Soc., 1982, 25:3, pp. 435-448.
  2. Vestomov E. M., Lubyagina E. N., Chermny V. V. Elementy teorii polukolets (Elements of the theory of semirings), Kirov: Raduga ― press, Kirov, 2012, 228 p.
  3. Golan J. S. Semirings and their applications, Kluwer Academic Publishers, Dordrecht; Boston; London, 1999, 380 p.

For citation: Maslyaev D. A. About the semiring of the Laurent skew polynomials and the expansion of Jordan, Bulletin of SyktyvkarUniversity. Series 1: Mathematics. Mechanics. Informatics, 2019, 2 (31), pp. 18-25.

III. Gorev A. V., Ustyugov V. A. Development of the speech recognition systems for home automation

Text

The article describes the mathematical foundations necessary for the speech recognition systems development. An embodiment of a speech recognition algorithm based on a comparison of the mel-frequency cepstral coecients of audio signal samples is described. The implementation of thesoftware speech activity detector is presented.

Keywords: speech recognition, mel-frequency coecients, kepstrum.

References

  1. Lindsei P., Norman D. Pererabotka informatsii u cheloveka (Humans information processing), Mir, 1974, 546 p.
  2. Huang X., Acero A. Spoken Language Processing: A Guide to Theory Algorithm, and System Development, Prentice Hall, 2001, 965 p.
  3. Lyons R. G. Understanding Digital Signal Processing, Addison Wesley Pub. Co, 2006, 656 p.
  4. Bracewell R. N. The Fourier Transform and its Applications, McGraw Hill, 2000, 620 p.
  5. Ganchev T., Fakotakis N. Comparative evaluation of various MFCC implementations on the speaker verification task, 10th International Conference on Speech and Computer, Patras, Greece, 2005.
  6. Moattar M. H., Homayounpour M. M. A ecient real-time voice activity detection algorithm, Laboratory for Intelligent Sound and Speech Processing (LISSP), Computer Engineering and Information Technology Dept., Amirkabir University of Technology, Tehran, Iran, 24.10.2009.
  7. Nandhini S., Shenbagavalli A. Voiced/Unvoiced Detection using Short Term Processing, International Journal of Computer Applications, 0975 ― 8887, 2014.
  8. Bachu R., Kopparthi S., Adapa B., Barkana B. Voiced/Unvoiced Decision for Speech Signals Based on Zero-Crossing Rate and Energy, AdvancedTechniques in Computing Sciences and Software Engineering, 2010, pp. 279-282.

For citation: Gorev A. V., Ustyugov V. A. Development of the speech recognition systems for home automation, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2019, 2 (31), pp. 26 ― 41.

IV. Khozyainov S. A. Identication of the relative cost of technically complex devices: An evaluation of graphics cards

Text

The article describes a method for determining the relative cost of technically complex devices using normalization of parameter values and additive criterion for evaluating the eciency of computers.

Keywords: complex devices, graphics cards, additive criterion, efficiency of computers, tender.

References

  1. Sobranie zakonodatel’stva Rossiiskoi Federatsii (Collected Legislation of the Russian Federation), 2011, No 46, Article 6539 (In Russian).
  2. Korporativnye zakupki ― 2016: praktika primeneniya Federal’nogo zakona № 223-FZ: sbornik dokladov (Corporate procurement ― 2016: practice of application of the Federal law No 223-FL. The collection of reports), Moscow, Book on Demand Publ., 2016, 232 p. (In Russian).
  3. Orlov S. A., Tsilker B. Ya. Organizatsiya EVM i sistem : uchebnik dlya vuzov (Organization of computers and systems: textbook for high schools), St. Petersburg, Piter Publ., 2011, 688 p. (In Russian).
  4. Orlov S., Vishnyakov A. Pattern-oriented architecture design of software for logistics and transport applications, Transport and Telecommunication, 2014, Vol. 15, No 1, pp. 27-41.
  5. Orlov S., Vishnyakov A. Pattern-oriented decisions for logistics and transport software, Transport and Telecommunication, 2010, Vol. 11, No 4, pp. 46-58.

For citation: Khozyainov S. A. Identification of the relative cost of technically complex devices: An evaluation of graphics cards, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2019, 2 (31), pp. 42-57.

V. Odyniec W. P. About Four Phsicist who participated in the USSR Ftomic Project

Text

The article deals with the life and work of Alexander Leypunsky (1903-1972), Ovsei Leypunsky (1904-1990), Dora Leypunsky (1912-1977) and Konstantin Petrzak (1907-1998). That what unites them is not only their participation in the USSR Atomic project, but also the fact that they all were born in the territory of the polish Kingdom of the Russian Empire (now part of the Republic of Poland).

Keywords: A. I. Leypunsky, O. I. Leypunsky, D. I. Leypunsky, K. A. Petrzhak, fast neutron reactor, diamond synthesis, radiation levels, neutron-activatting analysis, spontaneous fission of uranium.

References

  1. Gorobec B. S. Sekretnye fiziki iz Atomnogo proekta SSSR (Secret physicists from the Atomic project of the USSR), Sem’ya Lejpunskih, M.: Izd-vo Librokom, 2008, 512 p.
  2. Yaroslavskoe vosstanie. Iyul’ 1918 (Russia. The Ecyclopaedia), Red.-sost. V.ZH. Cvetkov i dr., Moskva: Posev, 1998, 112 p.
  3. Khramov Yu. A. Fiziki: Biograficheskij spravochnik, The Physicists. The biographies handbook, Pod red. A.I. Ahiezera, izd. 2., dop. i isp., M.: Nauka, 1983, 400 p.
  4. Odyniec W. P. O fizikah, priekhavshih v SSSR v dovoennoe vremya (On Physicists who came to the USSR in pre-war period), Vestnik Syktyvkarskogo universiteta, Ser. 1, Vyp. 1 (30), 2019, pp. 77-92.
  5. Frenkel V. Ya. Georgij Gamov: liniya zhizni 1904-1933 (George Gamov: The line of life 1904-1933), UFN, 1994, T. 164, vyp. 8, pp. 847-865.
  6. Biografii, Nacional’naya Akademiya Nauk SSHA (Biographers. National Academy of Sciences USA). URL: http://www.nap.edu/readingroom/books/biomems/frossini.html Frederick Dominic Rossini. (data obrashcheniya: 11.09.2019).
  7. Leypunsky O. I. Ob iskusstvennyh almazah (Upon synthetic diamond), Uspekhi Himii, T. VIII, vyp. 10, pp. 1519-1534.
  8. Rossiya. Enciklopedicheskij slovar’ (Russia. The Ecyclopaedia), pod red. K.K. Arsen’eva i F.F. Petrushevskogo, reprintnoe izdanie F. A. Brokgauz i I. E. Efron, 1898, L.: Lenizdat, 1991, 922 p.
  9. Petrzhak K. A., Flerov G. N. Spontannoe delenie urana (Spontaneous Fission of Uranium), ZHETF, 1940, T. 10, vyp. 9-10,pp. 1013-1017.

For citation: Odyniec W. P. About Four Phsicist who participated in the USSR Ftomic Project, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2019, 2 (31), pp. 58-78.

VI. Popov V. A. Tasks for researcher in the studying course of mathematical analysis: preliminary-continuity

Text

The characteristic of a set of research problems developed by the author on the subject of sections of mathematical analysis of the function of one variable formulated with the help of the concept of preliminary-continuity of the function at the point by him is given.

Keywords: research problem,the preliminary-continuity of the function at the point on the left (right).

References

  1. Yarkov V. G. Sushchnost’ i funktsii issledovatel’skikh zadach v obuchenii matematike studentov pedvuza (Essence and functions of research problems in teaching mathematics to students the University), Modern problems of science and education, 2013, No 6, URL: http://science-education.ru/ru/article/view?id=11061 (date accessed: 30.10.2018).
  2. Gelbaum B., Olmsted J. Kontrprimery v analize (Counterexamples in analysis), Moscow: Mir, 1967, 251 p.
  3. Shibinsky V. M. Primery i kontrprimery v kurse matematicheskogo analiza: uchebnoye posobiye (Examples and counterexamples in the course of mathematical analysis: textbook), Moscow: Higher school, 2007, 544 p.
  4. Boss In. Lektsii po matematike (Lectures on mathematics), T. 12, Counterexamples and paradoxes: a Textbook, Moscow: Librokom, 2009, 216 p
  5. Popov V. A. Issledovatel’skiye zadachi v kurse matematicheskogo analiza: prednepreryvnost’ (Research problems in the course of mathematical analysis: pre-continuity), Mathematical modeling and information technologies: national (all-Russian) scientific conference (6 – 8 December 2018 , G. Syktyvkar): collection of materials, Rev. edited by A. V. Yermolenko. Syktyvkar: Publishing house of SSU. Pitirima Sorokina, 2018, pp. 71-73.
  6. Popov V. A. Soglasovannyye funktsii (Coordinated functions), Bulletin of the Komi state pedagogical Institute, Vol. 2. Syktyvkar: KSPI publishing house, 2005, pp. 110-114.
  7. Popov V. A. Prednepreryvnost’. Proizvodnyye. P-analitichnost’ (pre-Continuity. Derivative. P-analyticity: a monograph), Syktyvkar: Komi pedagogical Institute, 2011, 228 p.
  8. Popov V. A. Integriruyemost’ po Rimanu i kontaktnost’ funktsii (Riemann Integrability and function contact), Teaching mathematics in schools and universities: problems of content, technology and methods: materials of the all-Russian scientific and practical conference,Glazov: Glazovsky state pedagogical University.in-t, 2009, pp. 22-26.

For citation: Popov V. A. Tasks for researcher in the studying course of mathematical analysis: preliminary-continuity, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2019, 2 (31), pp. 79-90.

VII. Popov V. A., Kaneva E. A. «Long» arithmetic in studies of statistics of the first digits of powers of two, Fibonacci numbers and primes

Text

The paper deals with educational and research problems of statistical regularities of the first digits of natural powers of two, Fibonacci numbers and Prime numbers in the programming environment PascalABC.NET. At the same time, elements of the theory of «long» arithmetic are used, which allow to significantly expand the volume of sets of the studied arraysof natural numbers and can be useful in the classroom for the study of programming languages by students.

Keywords: Benford’s law, powers of two, Fibonacci numbers, prime numbers, PascalABC.NET programming environment, «long» arithmetic.

References

  1. Okulov S. M. «Dlinnaya» arifmetika («Long» arithmetic), Informatics, M.: The first of September, 4, 2000, pp. 19-23.
  2. Okulov S. M. Algoritmy komp’yuternoy arifmetiki (Algorithms of computer arithmetic), S. M. Okulov, A. V. Lyalin, O. A. Pestov, E. V. Razova, 2nd ed. (El.), Electronic Text Data (1 pdf file: 288 p.), M.: BINOM. Knowledge Laboratory, 2015.
  3. Koptenok E. V., Kuzin A. V., Shumilin T. B., Sokolov M. D. Razrabotka sposoba predstavleniya dlinnykh chisel v pamyati komp’yutera (Development of a presentation method long numbers in computer memory), Young scientist, 2017, No 46, pp. 26-30. The same URL https://moluch.ru/archive/180/46418/ (accessed September 14, 2018).
  4. Dlinnaya arifmetika ot Microsoft (Long arithmetic from Microsoft), URL: https: // habrahabr.ru/post/207754 (accessed: 03.07.2016).
  5. Popov V. A., Kaneva E. A. Issledovatel’skiye zadaniya na zanyatiyakh po ovladeniyu komp’yuternymi tekhnologiyami (Research tasks in the lessons on mastering computer technologies), Mathematical modeling and information technology: a collection of articles of the International Scientific Conference, November 10-11, 2017, city Syktyvkar / otv. ed. A. V. Ermolenko, Syktyvkar: SSU named after Pitirim Sorokin, 2017, pp.109-113.
  6. Weil G. O ravnomernom raspredelenii chisel po modulyu odin (On the uniform distribution of numbers modulo one), Selected Works.Maths. Theoretical physics. Series « Classics of Science », M.: Nauka, 1984, pp. 58-93.
  7. Postnikov A. G., Parshin A. N. Kommentarii k stat’ye Veylya G. «O ravnomernom raspredelenii chisel po modulyu odin» (Comments on Weil G. «On the uniform distribution of numbers modulo one»), Weil G. Selected Works. Maths. Theoretical physics. Series «Classics of Science», M.: Nauka, 1984, pp. 451-455.
  8. Arnold V. I. «Zhestkiye» i «myagkiye» matematicheskiye modeli («Hard» and «soft» mathematical models), Ed. 2nd, stereotype, M.: MCCNMO, 2008, 32 p.
  9. Kuvakina L. V., Dolgopolova A. F. (Zakon Benforda: Sushchnost’ i primeneniye) Benford’s Law: Essence and Application, Modern high technology, 6, 2013, pp. 74-76. [Electronic resource] URL: https://www.top-technologies.ru/ru/article/view?id=31987 (date of access: 07.21.2017).
  10. Akulich I. Vsego lish’ stepeni dvoyki (Only powers of two), Quantum, 2, 2012, pp. 38-42.
  11. Mario L. φ ― chislo Boga. Zolotoye secheniye ― formula mirozdaniya (φ is the number of God. Golden section ― formula of the universe), trans. A. Brodotskaya, M.: Publishing group «AST», 2015, 432 p, URL:https://e-libra.ru/read/377938-chislo-boga-zolotoe-sechenie-formula-mirozdaniya.html(accessed March 7, 2016).
  12. Don Z. Pervyye 50 millionov prostykh chisel (The first 50 million primes), UMN, 39: 6 (240), 1984, pp. 175-190.
  13. Ribenboym P. Rekordy prostykh chisel (novaya glava v knige rekordov Ginnesa) (Records of primes (a new chapter in the GuinnessBook of Records)), UMN, 42: 5 (257), 1987, pp. 119-176.
  14. Poundstone W. Kamen’ lomayet nozhnitsy. Kak perekhitrit’ kogo ugodno: prakticheskoye rukovodstvo (The stone breaks the scissors. How to outwit anyone: a practical guide), trans. from English Yu. Goldberg, M.: ABC Business, ABC-Atticus, 2015, 352 p.

For citation: Popov V. A., Kaneva E. A. «Long» arithmetic in studies of statistics of the first digits of powers of two, Fibonacci numbers and primes, Bulletin of Syktyvkar University. Series 1: Mathematics.Mechanics. Informatics, 2019, 2 (31), pp. 91-107.

VIII. Popov N. I. Scientific and methodological seminar of the department of physical, mathematical and information education

Text

The article reveals modern activities of the scientific and methodological seminar at the Department of Physical, Mathematical and Information Education of the Pitirim Sorokin Syktyvkar State University.

Keywords: scientific and methodological activities of the seminar, participants of the scientific and methodological seminar.

References

  1. Popov N. I. Fundamentalizatsiya universitetskogo matematicheskogo obrazovaniya: monografiya (Fundamentalization of university mathematics education: monograph), Yoshkar-Ola: Mari State University Publishing House, 2012, 136 p.
  2. Popov N. I., Nikiforova E .N. Metodicheskiye podkhody pri eksperimental’nom obuchenii matematike studentov vuza (Methodical approaches in experimental teaching of mathematics to university students), Integration of Education, 2018, V. 22, ― 1, pp. 193-206.DOI: 10.15507 / 1991-9468.090.022.201801.193-206.
  3. Pevny A. B., Yurkina M. N. Metod kasatel’nykh pri nakhozhdenii maksimuma (Tangent method for finding the maximum) Mathematics in School, 2019, ― 4, pp. 32-34.
  4. Popov V. A. Kafedra matematiki Komi pedinstituta: istoriya stanovleniya i razvitiya (Department of Mathematics, Komi Pedagogical Institute: History of Formation and Development), Syktyvkar: Komi Pedagogical Institute, 2012, 216 p.
  5. Popov V. A. Ivan Semenovich Brovikov (k 100-letiyu so dnya rozhdeniya) (Ivan Semenovich Brovikov (on the 100th anniversary of his birth)), Mathematical education, 2016, ― 3 (79), pp. 93-97.
  6. Popov N. I., Kalimova A. V. Vyyavleniye spetsial’nykh sposobnostey budushchikh uchiteley matematiki, fiziki i informatiki (Identification of special abilities of future teachers of mathematics, physics and computer science), News of Saratov University. New series. Acmeology of education. Developmental psychology, 2019, V. 8, Issue 1 (29), pp. 12-18. DOI: https://doi.org/10.18500/2304-9790-2019-8-1-12-18.
  7. Yakovleva E. V., Popov N. I. Realizatsiya kognitivno-vizual’nogo podkhoda pri obuchenii matematike studentov vuza (Implementation of the cognitive-visual approach in teaching mathematics to university students), Informatization of continuing education ― 2018 = Informatization of Continuing Education ― 2018 (ICE-2018): proceedings of the International Scientific Conference, Moscow, October 14-17, 2018, V. 2 , Moscow: RUDN, 2018, pp. 240-243.
  8. Popov N. I., Shasheva N. S. The use of didactic units in the organization of computer testing, Informatization of continuing education ― 2018 = Informatization of Continuing Education ― 2018 (ICE-2018): proceedings of the International Scientific Conference, Moscow, October 14-17, 2018, V. 1, Moscow: RUDN, 2018, pp. 109-112.
  9. Popov N. I., Shustova E. N. Ob effektivnosti ispol’zovaniya metodicheskikh podkhodov pri izuchenii elementarnykh funktsiy budushchimi uchitelyami matematiki (On the effectiveness of the use of methodological approaches in the study of elementary functions by future teachers of mathematics), Bulletin of Omsk State Pedagogical University, Humanities research, 2018, ― 1 (18), pp. 139-144.

For citation: Popov N. I. Scientific and methodological seminar of the department of physical, mathematical and information education, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2019, 2 (31), pp. 108-116.

Leave a Comment