I. Kotelina N. О., Pevnyi А. В.Positive definiteness of generalized Cauchy matrices
Positive definiteness of matrices with entries Cij = 1/(ai + aj) a is proved for any a > 0. Similar theorem for matrices Aij = f (ai + aj) is proved.
Keywords: generalized Cauchy matrix, positive definite matrix.
References:
1. Karlin S., Studden W. Chebyshevskiyesistemyiikhprimeneniye v analizeistatistike (Tchebycheff systems with applications in analysis and statistics), IntersciencePubl, 1966, 568 p.
2. Kotelina N. О., Pevnyi А. В. Exponential convexity and total positivity, Siberian Electronic Math. Research, 2020 (to appear), proved.
For citation:Kotelina N. О., Pevnyi А. В. Positive definiteness of generalized Cauchy matrices, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 1 (34), pp. 3-7.
II. Latukhina E. A., Popov V. N.Solution of the ellipsoidal-statistical equation in the Poiseuille flow problem using discrete velocity method
The discrete velocity method is used to construct a solution to the problem of a Poiseuille flow in a plane channel with infinite parallel walls. The ES (ellipsoidal-statistical) model of the Boltzmann kinetic equation is used as the main equation, and the Maxwell specular-diffuse reflection model is used as the boundary condition on the channel walls. The specific (per unit channel width) heat and mass flow are calculated. Comparison with similar results presented in open press is provided.
Keywords: Boltzmann kinetic equation, model kinetic equations, specular- diffuse reflection model, discrete velocity method.
References:
1. Kloss Y. Y., Martynov D. V., Cheremisin F.G. Komp’yuternoemodelirovanieianaliztekhnicheskihharakteristiktermomolekulyarnyhmikronasosov (Computer simulation and analysis of technical charac¬teristics of Thermomolecularmicropumps), Technical Physics, 2011, vol. 56, 7, pp. 1040-1048.
2. LatyshevА. V., Yushkanov A. A. Analiticheskieresheniyagranich- nyhzadachdlyakineticheskihuravnenij (Analiticheskiyeresheniyagranichnykhzadachdlyakineticheskikhuravneniy), M.: MGOU, 2004, 286 p.
3. Frolova A. A. Chislennoesravneniereshenijkineticheskihmodel’nyhuravnenij (Chislennoesravneniereshenijkineticheskikhmodelnykhuravnenii), Matematikaimatematicheskoemodelirovanie, MGTU im. N.E. Baumana. Elektronnyyzhurnal, 2015, vol. 6, pp. 61-77.
4. Latyshev A. V., Yushkanov A. A. KineticheskieuravneniyatipaVil’yamsaiihresheniya (Kinetic Equations of the Williams Type and Their Exact Solutions), M.: MGOU, 2004, 271 p.
5. Bird G. A. Molecular Gas Dynamics and the Direct Simulation of Gas Flow, Oxford: Clarendon Press, 1994, 458 p.
6. Yen S. M. Numerical solution of the nonlinear Boltzmann equation for nonequillibrium gas flow problems, Annual Review of Fluid Mechanics, 1984, v. 16, pp. 67-97.
7. Barichello L.B., Siewert G.E. A Discrete-Ordinates Solutions for Poiseuille Flow in a Plane Channel, Zeitschrift fur Angewandte Mathematic und Physik, 1999, vol. 50, pp. 972-981.
8. SiewertС. E. Poiseuille, Thermal Creep and Couette Flow: Results Based on the CES Model Linearized Boltzmann Equation, European Journal of Mechanics B/Fluids, 2002, v. 21, pp. 579-597.
9. SiewertС. E. The linearized Boltzmann Equation: Concise and Accurate Solutions to Basic Flow Problems, Zeitschrift fur Angewandte Mathematic und Physik, 2003, v. 54, pp. 273-303.
10. Cercignani C. Matematicheskiemetody v kineticheskojteoriigazov (Mathematical Methods in Kinetic Theory), M.: Mir, 1973, 245 p.
11. SiewertС. E., Hickey K. A. Kinetic theory of thermal transpiration and the mechanocaloric effect: Planar flow of a rigid sphere gas with arbitrary accommodation at the surface, Journal of Vacuum Science and Technology, 1991, v. 9, pp. 158-163.
For citation:LatukhinaЕ. A., Popov V. N. Solution of the ellipsoidal- statistical equation in the Poiseuille flow problem using discrete velocity method, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 1 (34), pp. 8-21.
III. SozontovaЕ. A. On the solvability conditions of characteristic problems for a single hyperbolic system
In this paper, characteristic problems for a hyperbolic system with two independent variables are investigated. Using the Riemann method and the theory of integral equations, the conditions for unambiguous solvability of the problems are obtained.
Keywords: hyperbolic system, Riemann method, characteristic problem.
References:
1. Bicadze A. V. Nekotoryeklassyuravnenij v chastnyhproizvodnyh (Some classes of partial differential equations), Moscow: Nauka, 1981, 448 p.
2. UtkinaЕ. A. TeoremaedinstvennostiresheniyaodnojzadachiDirihle (A uniqueness theorem for solution of one Dirichlet problem), Izvestiyavuzov. Matematika – Russian Mathematics, 2011, no. 5, pp. 62-67.
3. Utkina E. A. ZadachaDirihledlyaodnogouravneniyachetvertogoporyadka (Dirichlet problem for a fourth-order equation), Differen- cial’nyeuravneniya – Differential equations, 2011, vol. 47, no. 4, pp. 400-404.
4. Mironova L. В. О harakteristicheskih zadachahdlyaodnojsistemy s dvukratnymistarshimichastnymiproizvodnymi (On characteristic problems for single system with two-fold higher partial derivatives), Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, Samara state technical University Review. Series: Physical and mathematical Scien¬ces, 2006, no. 43, pp. 31-37.
5. Sozontova E. A. О harakteristicheskih zadachahdlyaodnojsistemygiperbolicheskogotipa v trekhmernomprostranstve (On characteristic problems for single hyperbolic system in three-dimensional space) VestnikSamGU. Estestvennonauchnayaseriya, Samara State Univer¬sity Review. Natural science series, 2013, no. 6, pp. 74-84.
6. Myuntc G. Integral’nyeuravneniya (Integral equations), vol. 1, Liningrad-Moscow: STTP, 1934, 330 p.
7. Mironova L. B. Linejnyesistemyuravnenij s kratnymistarshimichastnymiproizvodnymi (Linear systems of equations with multiple higher partial derivatives), Candidate’s thesis, Kazan University, 2005, 140 p.
For citation:SozontovaЕ. A. On the solvability conditions of characte¬ristic problems for a single hyperbolic system, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 1 (34), pp. 22-28.
IV. SozontovaЕ. A. On the conditions of unambiguous solvability of a system of Volterra equations with partial integrals
In this paper, we obtain conditions for unambiguous solvability of a system of Volterra equations with partial integrals in n – dimensional space.
Keywords: system with private integrals, the condition of solvability, differential equation.
References:
1. Appel J. M., Kalitvin A. S., Zabreiko P. P. Partial Integral Operators and Integra-Differential Equations, New York, 2000, 386 p.
2. Zhegalov V. I. ReshenieuravnenijVol’terra s chastnymiintegralami s pomoshch’yudifferencial’nyhuravnenij (Solution of Volterra partial integral equations with the use of differential equations), Differen- cial’nyeuravneniya — Differential equations, 2008, vol. 44, no. 7, pp. 874-882.
3. Zhegalov V. I., Sozontova E. A. Usloviyarazreshimostiodnojsistemyintegral’nyhuravnenij v kvadraturah (Conditions for the solvability of a system of integral equations by quadratures), Differen- cial’nyeuravneniya — Differential equations, 2015, vol. 51, no. 7, pp. 958-961.
4. Sozontova E. A. Ob usloviyahrazreshimostitrekhmernojsistemyintegral’nyhuravnenij v kvadraturah (On the solvability conditions of a three-dimensional system of integral equations in quadratures), VestnikSamGU. Estestvennonauchnayaseriya — Samara State Uni¬versity Review. Natural science series, 2015, no. 10, pp. 40-46.
5. Chekmaryov T. V. FormulyresheniyazadachiGursadlyaodnojlinejnojsistemyuravnenij s chastnymiproizvodnymi (Formulas for solving the Goursat problem for single linear system of partial differential equations), Differencial’nyeuravneniya — Differential equations, 1982, vol. 18, no. 9, pp. 1614-1622.
For citation:SozontovaЕ. A. On the conditions of unambiguous solvability of a system of Volterra equations with partial integrals, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 1 (34), pp. 29-34.
V. Mironova Yu. N.Place of Geoinformatics in the system of Sciences
The paper considers the connection of Geoinformatics with various Sciences, from the point of view of various authors, the nomenclature of scientific specialties, and presents the main areas of research according to the passport of the scientific specialty “Geoinformatics” of the Higher attestationCommission.
Keywords:Geoinformatics, cartography, computational geometry, computer graphics, science.
References:
1. Mironova Yu. N. Use of fuzzy sets in modeling of GIS objects, International Conference Information Technologies in Business and Industry 2018 / Journal of Phisics: Conference Series, 1015, 2016, 032094, URL: http://iopscience.iop.org/article/10.1088/1742-6596/ 1015/3/ 032094.
2. Mironova Yu. N. The Use of Mathematical Logic in the Automated Decoding of Images, 2019 International Multy-Conference on Industrial Engineering and Modern Technologies (FFarEastCon), 1-4 Oct. 2019. Vladivostok, Russia, URL: http://ieeexplore.ieee.org/document/ 8933838, DOI: 10.1109/FarEastCon.2019.8933838.
3. Skvorcov A. V., Sarychev D. S. Tehnologijapostroenijaianalizatopologicheskihstrukturdljageoinformacionnyhsistemisistemavto- matizirovannogoproektirovanija (Technology for building and analyzing topological structures for geoinformation systems and computer-aided design systems), VestnikTomskogogosudarstvennogouniversiteta, Bulletin of Tomsk state University, № 275, 2002, pp. 60-63.
4. Mironova Yu. N. Matematicheskieaspektygeoinformatiki (Ma¬thematical aspects of Geoinformatics), Internet-zhurnal «Naukovede¬nie» — Internet-journal «Science», 2015, vol. 7, № 5, URL: http://nau- kovedenie.ru/PDF/93TVN515.pdf (date of application: 12.02.2020).
5. Rakov V. P. Geograficheskieinformacionnyesistemy v tematicheskojkartografii: Uchebnoeposobiedljavuzov (Geographical information systems in thematic cartography: textbook for universities), 4th ed, Moscow: Academic project, 2014, 176 p.
6. Kapralov E. G., Koshkarev A. V., Tikunov V. S., and others. Geoinformatika: v 2 kn. Kn. 1: uchebnikdlja stud, vyssh. ucheb. zavedenij (Geoinformatics: in 2 books. kN. 1: tutorial for students.), edited by V. S. Tikunov, M: Publishing center «Academy», 2010, 400 p.
7. Mironova Yu. N. Novyemetodyvirtual’nogomodelirovanija v geoinformacionnyhtehnologijah (New methods of virtual modeling in geoinformation technologies), Internet-zhurnal «Naukovedenie», Internet journal «Naukovedenie», vol. 8, № 5, 2016, URL: http://nau- kovedenie.ru/PDF/03TVN516.pdf (date of application: 12.02.2020).
8. Nomenklaturanauchnyhspecial’nostej (v red. PrikazovMinobrnauki RF ot 11.08.2009 > 294, ot 10.01.2012 > 5), (Nauchnyhspecial’nostej nomenclature. Displays of Minobrnauki RF ot 11.08.2009 > 294, ot 10.01.2012 № 5), URL: http://sputnikplus.ru/nomenklatura_nauch- nyh_spetsialnostey.htm (date of application: 12.02.2020).
9. Vysshajaattestacionnajakomissija (VAK). Pasportanauchnyh special’- nostej (Higher attestation commission(HAC). Passports of scientific specialties), URL: http://vak.ed.gov.ru/316 (date of application: 12.02.2020).
10. Nazmutdinova A. I. Razrabotkaiissledovaniemetodainterpretaciikosmicheskihsnimkovploshhadnyhob’ektovmestnostinaosnovevejvlet-analiza (Development and research of method of interpretation of satellite images of area landmarks based on wavelet analysis), The author’s abstract Diss, for the degree of. sciences’. Extended abstract of Cand. Techn. thesis, Izhevsk, 2016.
11. Bulgakov S. V. Osnovygeoinformacionnogomodelirovanija (Bases of geoinformation modeling), Izvestijavysshihuchebnyhzavedenij. Geodezijaiajerofotos’emka, Proceedings of higher educational institu¬tions. Geodesy and aerial photography, vol. 3, 2013, pp. 77-80.
12. Mironova Yu. N. Primeneniegeoinformacionnyhsistem v sportivnomorientirovanii (Application of geoinformation systems in orienteering) Teorijaipraktikafizicheskojkul’tury, Theory and practice of physical culture, № 3, 2018, pp. 71-73.URL: http://www.teoriya.ru/ru/node/7805 (date of application: 12.02.2020).
13. Jing Zhang, Jia Zhang, Xiangyang Du, Kang Hou, MinjuanQiao. An overview of ecological montirng based on geographic information system (GIS) and remote sensing (RS) technology in Chna. IOP Conf. Series: Earth and Environmental Science, 94, 2017, 012056, DOLIO.1088/1755-1315/94/1/012056.
14. Risky Yanuar S., WahyuNurbandi, RadenRamadhaniYudha A., BradaIrmaning T., ArtantiPrisma Z., RosyitaAlifiya, Wisudawan Putra D. and Sudaryatno, Using Remote Sensing and Geographic Information System (GIS) for Peak Discharge Esti¬mating in Catchment of Way Ratai, Pesawaran District, Lampung Province IOP Conf. Series: Earth and Environmental Science, 165, 2018, 012032, DOI :10.1088/1755-1315/165/1/012032.
15. LubisМ. Z., Taki II. М., Anurogo W., Pamungkas D.
S., Wicaksono P., Aprilliyanti T. Mapping the Distribution of Potential Land Drought in Batam Island Using the Integration of Remote Sensing and Geographic Information Systems (GIS) IOP Conf. Series: EarthandEnvironmentalScience, 98, 2017, 012012, DOI :10.1088/1755-1315/98/1/012012.
For citation: Mironova Yu. N. Place of Geoinformatics in the system of Sciences, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 1 (34), pp. 35-46.
VI. Fedirko S. N. Implementation of dss for managing information security of an organisation based on free software
Methods for creating specialized decision support systems for risk management in an organization based on free software are considered.
Keywords: DSS, safety, risks, The Brain, Autoit.
References:
1. GOST R ISO 31000-2010 «Menedzhmentriska. Printsipyirukovodstvo» (GOST RISO 31000-2010 «Risk Management. Principles and guidance»), M.: STANDARTINFORM, 2012.
2. Global’nayabezopasnost’ v tsifrovuyuepokhu: stratagemydlyaRossii (Global security in the digital age: stratagems for Russia. Under the General editorship of Smirnova A. I.), M.: Vniigeosystem, 2014, 394 p.
3. VishnyakovYa. D. Obshchayateoriyariskov (General risk theory), 2-e Izd., Moscow: publishing center «Academy», 2008, 368 p.
4. Gavrilova Т. A., khoroshevskiy V. F. Bazyznaniyintellektual’nykh, sistem (Kowledge Bases of intelligent systems), SPb.: Peter, 2001, 384 p.
5. Filak P. Yu., Fedirko S. N., Kostina E. A. Obespecheniyeinformatsionnoybezopasnosti s pomoshch’yugrafovykhbazdannykhigrafovykhsistempredstavleniyaiupravleniyaznaniyami (Information security with the help of graph databases and graph systems of representation and knowledge management), Information and security, 2017, Vol. 20, № 2, pp. 285-288.
6. THE BRAIN. Ofitsial’nyysayt BRAIN (THE BRAIN. Official site BRAIN), [Electronic resource] URL: http://www.thebrain.com (date of the application 07.09.2018).
7. Ostapenko, A. G., Yermilov, E. V., Kalashnikov, A. O. Postroyeniyefunktsiyushcherbairiskadlya komp’yuternykh atak, privodyashchikhknarusheniyudostupnostiк informatsii (Building damage and risk functions for computer attacks), Leading to violation of accessibility to information, 2013, Vol. 16, > 2, pp. 207-210.
8. Filak P. Yu., Fedirko S. N. Obespecheniyeinformatsionnoybezopasnosti s pomoshch’yutekhnologiiupravleniyaznaniyami «Brain» (Information security using technologies of knowledge management «Brain»), Information and security, 2016, Vol. 19, No. 2, pp. 238¬243.
9. ISO/IEC 27005:2011 — «Informatsionnyyetekhnologii. Metodyobespecheniyabezopasnosti. Upravleniyeriskamiinformatsionnoybezopasnosti» (ISO/IEC 27005:2011 — Information technology, Security techniques. Information security risk management).
For citation:Fedirko S. N. Implementation of dss for managing information security of an organization based on free software, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2020, 1 (34), pp. 47-54.
VII. Mironov V. V., Lodygin V. Е. Auxiliary operator method for solving linear boundary value problems
For a known Green function for a linear boundary value problem with homogeneous boundary conditions, this problem can be considered solved. However, the analytical construction of the green function even for a one-dimensional boundary value problem with variable coefficients is very problematic. At the same time, it is often possible to choose a (auxiliary) differential operator of the same order as the operator of the problem under consideration, but one for which the green function is calculated quite simply under the boundary conditions of the original problem.
The paper shows that in such cases, the original boundary value problem is reduced to the Fredholm integral equation (of the 1st or 2nd kind), which can be solved using, for example, the method of mechanical quadratures [1].
Keywords: linear boundary value problem, green’s function, integral equations, numerical methods.
References:
1. Daugavet I. K. Priblizhennoereshenielinejnyhfunkcional’nyhuravnenij: Uchebnoeposobie (Approximate solution of linear functional equations : a training manual), L.: Izd-voLeningr. un-ta, 1985, 224 p.
2. Hort W. Die Differentialgleichungen des Ingenieurs, Berlin / Verlag von Julius Springer. 1925, 704 p.
3. Mihajlovskij E. I. Matematicheskiemodelimehanikiuprugihtel (Mathematical models of elastic body mechanics), Syktyvkar: Izd-voSyktyvkarskogo un-ta, 2007, 516 p.
4. Mihajlovskij E. I. Lekciipovariacionnymmetodammehanikiuprugihtel, Uchebnoeposobie (Lectures on variational methods in mechanics of elastic tel :tutorial), Syktyvkar: Izd-voSyktyvkarskogo un-ta, 2002, 256 p.
For citation:Mironov V. V., Lodygin V. E. Auxiliary operator method for solving linear boundary value problems, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Informatics, 2019, 1 (34), pp. 55-69.
VIII. Odyniec W. P.Nobody forgotten, nothing is forgotten
The article is dedicated to the memory of five faculty of the Department of Mathematics and Mechanics of Leningrad (now St. Petersburg) State University professor V. S. Ignatovsky, corresponding member of the USSR Academy of Sciences; docents N. A. Artemyev and V. S. Milinsky; N. S. Smir¬nov, Cand. Phys- Math. Sci.; P. P. Obraztsov, laboratory assiste, perished in the besieged Leningrad in early 1942.
Keywords: V. G. Ignatovsky, N. A. Artemyev, V. S. Milinsky, N. S. Smir¬nov, P. P. Obraztsov, mathematical physics equations, diffraction, optical mechanics, integral equation, qualitative theory of ordinary differential equation, differential geometry, Kolosov surfaces.
References:
1. KnigapamyatiLeningradskogo Sankt-Peterburgskogouniversiteta 1941-1945 (The Book of Memory of Leningrad St. Petersburg Univer¬sity 1941-1945), SPb.: Izd-voSPbGU, 2000, Vyp. 2, 200 p.
2. ArhivUpravleniya FSB po Sankt-PeterburguiLeningradskojoblasti (The Archive of the Directorate of the FSS (FSB) of St. Petersburg and the Leningrad oblast), File -29626, T. 1, T. 2.
3. Tarnov V. V. Parad, izumivshijmir. IzarhivovMinisterstvaoborony SSSR (A parade that amazed the world. From the archives of the USSR Ministry of Defense), Voenno-istoricheskii zhurnal, 1989, № 1, p. 61-72.
4. Artemyev N. A. Metodopredeleniyaharakteristicheskihpokazatelejiprilozhenie ego к dvum zadachamnebesnojmekhaniki (A method for determining characteristic indicators and its application to two problems of celestial mechanics), Izv. AN, ser. mat., T. 8, 1944, 61-100.
5. Ignatovsky V. S. Svyaz’ mezhdugeometricheskojivolnovojoptikojidifrakciyagomocentricheskogopuchka (A connection between geometrical and wave optics and the diffraction of the homocentric bundle), Trudy GOI, Petrograd, 1919, T. 1., p. 1-36.
6. Ignatovsky V. S. Difrakciyaob”ektivaprilyubomotverstii (Diffraction of the optic glass for every opening), Trudy GOI, Petrograd, 1920, Vyp. 3., p. 1-30.
7. Ignatovsky V. S. Difrakciyaparabolicheskogozerkalaprilyubomotverstii (Diffraction of the parabolic mirror for every opening), Trudy GOI, Petrograd, 1920, Vyp. 5., p. 1-30.
8. ZhitomirskyО. K., Lvovsky V. D., Milinsky V. I. Zadachipovysshejgeometrii (Problems in higher geometry), P.l, L.-M.: ONTI, 1935, 303 p.
9. Matematika v SSSR zasorok let 1917-1957 (Mathematic of the USSR for forty years: 1917-1957), Vol. 2, Bibliography- M.:Fizmatlit, 1959, 819 p.
10. Ilyin V. E., Tarasov N. P. Bitvaza Tulu. Sbornikdokumentovimaterialov (Battle for Tula. A collection of documents and materials), 4th-ed, Tula: Priokskoeknizhnoeizd-vo, 1969, 405 p.
11. KnigapamyatiLeningradskogo Sankt-Peterburgskogouniversiteta 1941-1945 (The Book of Memory of Leningrad, St. Petersburg University 1941-1945), SPb.: Izd-voSPbGU, 1995, Vyp. 1, 352 p.
12. Milinsky V. I. Nomografiya (Nomography), Leningrad: Art. Akad. RKKA, 1932, 60 p.
13. Trudy 2-go Vsesoyuznogomatematicheskogos”ezda (Proceeding of the 2nd All-Russian Mathematical Congress), Vol. 2, L.-M.: Izd-voAcademiiNauk SSSR, 1936, 467 p.
14. Milinsky V. I. Differencial’nayageometriya (Differential geometry), Leningrad: Kubuch, 1934, 332 p.
15. Odyniec W. P. О tryoh leningradskihgeometrah, pogibshihvovremyavojny (On three Leningrad geometers perished during the war), Nekotoryeaktualnye problem sovremennoimatematiki I matematicheskogoobrazovaniya. Gertzenovskiechteniya- 2020, T. LXXIII, SPb.:Izd-vo RGPU im. A.I.Gertzena, 2020, 246 p.
16. Darboux J. G. Principyanaliticheskojgeometrii (Principles of analytical geometry), Transl. from Fr. ed. V. I. Milinsky, Leningrad- Moskva: GONTI, Glavn. red. tekh.teor. lit-ry, 1938, 376 p.
17. Dzyk P. G. Sbornikstereometricheskihzadachnakombinaciigeometricheskihtel (A collection of stereometry problems on combing geometric bodies), Ed. V. I. Milinsky, M-L.:Uchpedgiz, 1936, 52 p.
18. Popruzhenko M. G. Sbornikgeometricheskihzadach. Planimetriya (A collection of geometrical problems. Plane geometry), edited and enlarged by V.I. Milinsky, 5th ed., Leningrad: Uchpedgiz L.O., 1939, 72 p.
19. MatematicheskijPeterburg. Spravochnik-putevoditeT (Mathematical Petersburg. A guide-book), Composed and edited by G.I. Sinkevich, SPb.: Obrazovatelnyeproekty, 2018, 336 p.
20. Popov V. A. Kafedramatematiki Komi pedinstituta: istoriistanovleniyairazvitiya (The mathematics department of the Komi Pedinstitute: the history of formation and development), Syktyvkar: Komipedinsti- tut, 2012, 216 p.
For citation:Odyniec W. P. Nobody forgotten, nothing is forgotten, Bulletin of Syktyvkar University. Series 1: Mathematics. Mechanics. Infor¬matics, 2020, 1 (34), pp. 70-91.