Вестник 4 (49) 2023

Полный текст

I. НЕКОТОРЫЕ ОСОБЕННОСТИ УГЛОВ ВЫЛЕТА ЧАСТИЦ, РОЖДЁННЫХ В РЕАКЦИЯХ РАСПАДА, В РЕЛЯТИВИСТСКОМ И НЕРЕЛЯТИВИСТСКОМ СЛУЧАЯХ

https://doi.org/10.34130/1992-2752_2023_4_4

Павел Андреевич Макаров — Физико-математический институт ФИЦ Коми НЦ УрО РАН, makarovpa@ipm.komisc.ru

Текст статьи

Аннотация. На основе кинематического подхода изучены некоторые особенности углов вылета дочерних частиц, рождённых в процессах распада. Сформулированы и доказаны утверждение и теоремы, описывающие кинематику реакций распада в нерелятивистском и релятивистском случаях.

Ключевые слова: распад, кинематика, законы сохранения, углы вылета, преобразования Лоренца Некоторые особенности углов вылета частиц.

Список источников

  1. Широков Ю. М., Юдин Н. П. Ядерная физика. М.: Наука, 1980. 728 с.
  2. Наумов А. И. Физика атомного ядра и элементарных частиц. М.: Просвещение, 1984. 384 с.
  3. Hofmann S., et al. Proton radioactivity of 151Lu // Z Physik A. 1982. Vol. 305. Pp. 111–123.
  4. Giovinazzo J., et al. Two-Proton Radioactivity of 45Fe // Phys. Rev. Lett. 2002. Vol. 89. No 10. Art. N. 102501.
  5. Pf¨utzner M., et al. First evidence for the two-proton decay of 45Fe // Eur Phys J A. 2002. Vol. 14. Pp. 279–285.
  6. Rose H. J., Jones G. A. A new kind of natural radioactivity // Nature. 1984. Vol. 307. Pp. 245–247.
  7. Александров Д. В. и др. Наблюдение спонтанного вылета ядер 14C из 223Ra // Письма в ЖЭТФ. 1984. Т. 40. С. 152–154.
  8. Оганесян Ю. Ц., Пенионжкевич Ю. Э., Григорьев В. А. Физика тяжелых ионов и ее приложения. Дубна: ОИЯИ, 2021. 363 с.
  9. Нелипа Н. Ф. Физика элементарных частиц. М.: Высшая школа, 608 с.
  10. Particle Data Group. Review of Particle Physics // Progress of Theoretical and Experimental Physics. 2022. Vol. 2022. No 8. Art. N. 083C01.
  11. Балдин А. М. и др. Кинематика ядерных реакций. 2-е изд., перераб. и доп. М.: Атомиздат, 1968. 456 с.
  12. ATLAS Collaboration, Aad G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC // Phys. Lett. B. 2012. Vol. 716. Pp. 1–29.
  13. CMS collaboration, Chatrchyan S. et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC // Phys. Lett. B. 2012. Vol. 716. Pp. 30–61.
  14. CMS collaboration, Tumasyan A. et al. Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at √ s = 13 TeV // J. High Energ. Phys. 2023. Issue 5. No 233.
  15. ATLAS Collaboration, Aad G. et al. Searches for exclusive Higgs and Z boson decays into a vector quarkonium state and a photon using 139 fb−1 of ATLAS √ s = 13 TeV proton-proton collision data // The European Physical Journal C. 2023. Vol. 83. No 9. Art. N. 781.
  16. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. II. Теория поля. М.: ФИЗМАТЛИТ, 2003. 536 с.
  17. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. IV. / Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Квантовая электродинамика. М.: ФИЗМАТЛИТ, 2006. 720 с.
  18. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. I. Механика. М.: ФИЗМАТЛИТ, 2007. 224 с.

Для цитирования: Макаров П. А. Некоторые особенности углов вылета частиц, рождённых в реакциях распада, в релятивистском и нерелятивистском случаях // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2023. Вып. 4 (49). C. 4−28. https://doi.org/10.34130/1992-2752_2023_4_4

II. АНАЛИЗ ДАННЫХ О ЛЕСНЫХ ПОЖАРАХ В РЕСПУБЛИКЕ КОМИ С ПОМОЩЬЮ EXCEL И PYTHON

https://doi.org/10.34130/1992-2752_2023_4_29

Надежда Николаевна Бабикова — Сыктывкарский государственный университет
им. Питирима Сорокина

Надежда Олеговна Котелина — Сыктывкарский государственный университет
им. Питирима Сорокина

Фёдор Николаевич Тентюков — Сыктывкарский государственный университет
им. Питирима Сорокина

Текст статьи

Аннотация. В статье представлены результаты анализа данных о лесных пожарах в Республике Коми за 2010–2023 годы. Исследование проводилось при помощи табличного процессора Excel, библиотек Python: Scikit-learn, Pandas, Numpy, Openpyxl, Folium.

Ключевые слова: анализ данных, Python, кластеризация k-means, кластеризация DBSCAN, лесные пожары.

Список источников

  1. Колеров Д. А. Совершенствование методов мониторинга и реагирования на лесные пожары в Республике Коми (на примере искусственного интеллекта) // ОБЖ: Основы безопасности жизни. 2022. № 1. С. 56–59.
  2. Волокитина А. В., Софронова Т. М., Корец М. А. Региональные шкалы оценки пожарной опасности в лесу: усовершенствованная методика составления // Сибирский лесной журнал. 2017. № 2. С. 52–61. DOI: 10.15372/SJFS20170206.
  3. Геоинформационный портал Республики Коми [Электронный ресурс]. URL: https://gis.rkomi.ru/ (дата обращения: 11.11.2023).
  4. Котелина Н. О., Матвийчук Б. Р. Кластеризация изображения методом k-средних // Вестник Сыктывкарского университета. Серия 1: Математика. Механика. Информатика. 2019. Вып. 3 (32). С. 101–112.
  5. Scikit-learn documentation [Электронный ресурс]. URL: https://scikitlearn.org/stable/modules/clustering.html#hdbscan (дата обращения: 11.11.2023).
  6. Анисимов О. А., Борщ С. В., Георгиевский В. Ю. и др. Методы оценки последствий изменения климата для физических и биологических систем / Институт глобального климата и экологии Федеральной службы по гидрометеорологии и мониторингу окружающей среды и Российской академии наук. М.: Научно-исследовательский центр космической гидрометеорологии «Планета», 2012. 512 с.

Для цитирования: Бабикова Н. Н., Котелина Н. О., Тентюков Ф. Н. Анализ данных о лесных пожарах в Республике Коми с помощью Excel и Python // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2023. Вып. 4 (49). C. 29−46. https://doi.org/10.34130/1992-2752_2023_4_29

III. ВВЕДЕНИЕ В ТЕОРИЮ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПРИ ОБУЧЕНИИ СТУДЕНТОВ

https://doi.org/10.34130/1992-2752_2023_4_47

Андрей Васильевич Ермоленко — Сыктывкарский государственный университет им. Питирима Сорокина, ea74@list.ru

Текст статьи

Аннотация. В статье обсуждаются вопросы знакомства студентов с математическим моделированием на младших курсах. Предлагаются способы знакомства через индивидуальную подготовку, привитие интереса через исторические и филосовские экскурсы, знакомство с математическим моделированием на фундаментальных дисиплинах.

Ключевые слова: численные методы, подготовка научных кадров, модель Лотки – Вольтера, математическое моделирование

Список источников

  1. Михайловский Е. И. Школа механики оболочек академика Новожилова. Сыктывкар: Изд-во Сыктывкарского ун-та, 2005. 172 с.
  2. Михайловский Е. И., Ермоленко А. В., Миронов В. В., Тулубенская Е. В. Уточненные нелинейные уравнения в неклассических задачах механики оболочек : учебное пособие. Сыктывкар: Изд-во Сыктывкарского ун-та, 2009. 141 с.
  3. Ермоленко А. В. Классические контактные задачи со свободной границей // Проблемы математического образования в вузах и школах России в условиях его модернизации: IV Всероссийская научно–методическая конференция : сборник материалов. Сыктывкар: Изд-во СыктГУ, 2014. С. 160–167. Введение в теорию математического моделирования 55
  4. Фокин Р. Р., Атоян А. А., Абиссова М. А. Изучение математики, информатики, математического и информационного моделирования: пути роста мотивации студента // Научный альманах. 2022. № 1–1 (87). С. 111–114.
  5. Жаркова Ю. С. Преподавание элементов математического моделирования в педагогическом вузе как средство развития профессиональных компетенций // Вестник Челябинского государственного педагогического университета. 2014. № 9–1. С. 85–93.
  6. Асланов Р. М., Сушков В. В. Исторические пути возникновения и развития теории функций комплексного переменного // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2022. Вып. 3 (44). C. 47–63.
  7. Студенты СГУ им. Питирима Сорокина – стипендиаты Президента и Правительства России [Электронный ресурс]. URL: https://www.syktsu.ru/news/17286/ (дата обращения: 21.11.2023).
  8. Ермоленко А. В., Осипов К. С. О применении библиотек Python для расчета пластин // Вестник Сыктывкарского университета. Серия 1: Математика. Механика. Информатика. 2019. № 4 (33). С. 86–95.
  9. Ермоленко А. В., Лотоцкая С. Р. Численное решение задачи «Хищник – жертва» // Актуальные вопросы современной науки : сборник научных статей по материалам III Международной научно-практической конференции (21 ноября 2023 г., г. Уфа) : в 3 ч. Уфа: Изд. НИЦ Вестник науки, 2023.Ч. 1. C. 11–16.
  10. Фокин Р. Р., Атоян А. А., Абиссова М. А. О мотивации к изучению в высшей школе дисциплин из областей математики, информатики, математического и информационного моделирования // Современные наукоемкие технологии. 2017. № 2. С. 172–176.
  11. Попов Н. И., Адиганова Н. А. Об одной математической модели биологической задачи «хищник – жертва» // Вестник МГПУ «Естественные науки». 2017. № 4 (28). С. 119–126.

Для цитирования: Ермоленко А. В. Введение в теорию математического моделирования при обучении студентов // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2023. Вып. 4 (49). C. 47−58. https://doi.org/10.34130/1992-
2752_2023_4_47

IV. СЕМАНТИЧЕСКИЕ АСПЕКТЫ В МЕТОДИКЕ ОБУЧЕНИЯ МАТЕМАТИКЕ

https://doi.org/10.34130/1992-2752_2023_4_59

Ольга Александровна Сотникова — Сыктывкарский государственный университет им. Питирима Сорокина, sotnikovaoa@syktsu.ru

Текст статьи

Аннотация. Приведен анализ методологии математики, касающейся семантики математического материала. Автор исходит из необходимости достижения понимания при изучении математики. Обосновано, что семантические аспекты обучения математике ориентируют на организацию установления содержательных связей в математическом материале.

Ключевые слова: понимание математики в обучении, содержательные связи, осмысление математических понятий

Список источников

  1. Библер В. С. От наукоучения – к логике культуры: Два философских введения в двадцать первый век [Электронный ресурс].URL:https://platona.net/load/knigi_po_filosofii/kulturologija/bibler_v_s_ot_naukouchenija_k_logike_kultury_dva_ filosofskikh_vvedenija_v_dvadcat_pervyj_vek/16-1-0-1042 (дата обращения: 28.11.2023).
  2. Доблаев В. П. Смысловая структура учебного текста и проблемы его понимания. М.: Педагогика, 1982. 176 с.
  3. Рузавин Г. И. Понимание как комплексная методологическая проблема // Проблемы объяснения и понимания в научном познании : сб. ст. / АН СССР, Ин-т философии; oтв. ред. Г. И. Рузавин. М.: Б. и., 1982. С. 1–23.
  4. Зинченко В. П. Психологические основы педагогики. М.: Гардарики, 2002. 431 с.
  5. Фреге Г. Смысл и значение [Электронный ресурс]. URL: https://kant.narod.ru/frege1.htm (дата обращения: 12.11.2023).
  6. Черч А. Введение в математическую логику. М.: Изд-во иностр. лит., 1960. 485 с.
  7. Мадер В. В. Введение в методологию математики [Электронный ресурс]. URL: https://fileskachat.com/view/42260_ f37ce0eec2526c065cec09140f140be3.html (дата обращения: 03.10.2023).
  8. Шафаревич И. Р. Основные понятия алгебры. Ижевск: Ижевская республиканская типография, 1999. 348 с.
  9. Вечтомов Е. М. Метафизика математики. Киров: Изд-во ВятГГУ, 2006. 508 с.
  10. Вейль Г. Математическое мышление. М.: Наука, 1989. 400 с.

Для цитирования: Сотникова О. А. Семантические аспекты в методике обучения математике // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2023. Вып. 4 (49). C. 59−69. https://doi.org/10.34130/1992-2752_2023_4_59

V. О РАБОТАХ МАТЕМАТИКА, ЗАЩИТНИКА МОСКВЫ, КОРЕЙЦА ШИН ДЕН ЮНА (1912–1942)

Владимир Петрович Одинец — W.P.Odyniec@mail.ru

Текст статьи

Аннотация. В статье идет речь о работах по квазидифференциальным уравнениям и квазидифференциальным операторам в гильбертовом пространстве корейца Шин Ден Юна (1912–1942), аспиранта мех.-мата МГУ.

Ключевые слова: квазидифференциальное выражение, квазидифференциальный оператор, гильбертово пространство, линейно независимые решения, оборона Москвы

Список источников

  1. Математика в СССР за сорок лет 1917–1957. Т. 2. Биобиблиография. М.: Физ.-мат. лит., 1959. 819 с.
  2. Шин Ден Юн. Теоремы колебания граничных проблем самосопряженной дифференциальной системы 4-го порядка // ДАН. № 6. C. 323–324.
  3. Шин Ден Юн. Теоремы существования квазидифференциального уравнения n-го порядка // ДАН. 1938.№ 8. C. 515–518.
  4. Шин Ден Юн. О решениях самосопряженного дифференциального уравнения u[n] = lu, I(l) 6= 0, принадлежащих к L2(0,∞) // ДАН. 1938. 18. № 8. C. 519–522.
  5. Одинец В. П. О ленинградских математиках, погибших в 1941– 1944 годах. II. Cыктывкар: Изд-во СГУ им. Питирима Сорокина, 108 с.
  6. Janchevski S. Oscillation theorem for the differential boundary value problem of the fourth order // Annals of Mathematics. 1927–1928. 29. Pp. 521–542.
  7. Janchevski S. Oscillation theorem for the differential boundary value problem of the fourth order // Annals of Mathematics. 1930. 31. Pp. 663–680.
  8. Шин Ден Юн. О решениях линейного квазидифференциального уравнения n-го порядка // Матем. сб. 1940. T. 7 (49). C. 479–532.
  9. Математика в СССР за тридцать лет 1917–1947 / под ред. А. Г. Куроша, А. И. Маркушевича, П. К. Рашевского М.; Л.: ОГИЗ. Изд-во тех.-теор. лит-ры, 1948, 1045 с.
  10. Шин Ден Юн. О квазидифференциальных операторах в гильбертовом пространстве // ДАН. 1938. 18. № 8. C. 523–526.
  11. Шин Ден Юн. О решениях системы квазидифференциальных уравнений // ДАН. 1940. 28. № 5. C. 392–396.
  12. Никольский С. М. Воспоминания. М.: МИАН, 2003. 160 с.
  13. Шин Ден Юн. О квазидифференциальных операторах в гильбертовом пространстве. // Матем. сб. 1943. T. 13 (55). C. 39–70.

Для цитирования: Одинец В. П. О работах математика, защитника Москвы, корейца Шин Ден Юна (1912–1942) // Вестник Сыктывкарского университета. Сер. 1: Математика. Механика. Информатика. 2023. Вып. 4 (49). C. 70−79. https://doi.org/10.34130/1992-
2752_2023_4_70

Оставьте комментарий