Bulletin 18 2013

Issue 1 (18) 2013

I. Belyayev Yu.N., Popov S.À. Transfer matrix of elastic deformations in crystals

Text

Differential equations of elastic waves in crystals are solved using sixth-order symmetric polynomials and scaling method. Influence of layer thickness and frequency of the wave by the scaling factor is investigated. Analytic solution describing the transfer of elastic stresses in the crystalline layer of the cubic system is obtained.

Keywords: layered media, waves, matrix, symmetric polynomials, truncation error, scaling.

References

  1. Молотков Л. А. Матричный метод в теории распространения волн в слоистых упругих и жидких средах. Л.: Наука. 1984. 201 с.
  2. Бреховских Л. М., Годин О. А. Акустика слоистых сред. М.: Наука. 1989. 416 с.
  3. Красильников В. А., Крылов В. В. Введение в физическую акустику. М.: Наука. 1984. 400 с.
  4. Беляев Ю. Н. К вычислению функций матриц // Математические заметки, 2013. Т. 94, Вып. 2, С. 175-182.
  5. Сиротин Ю. И., Шаскольская М. П. Основы кристаллофизики. М.: Наука. 1979. 640 с.
  6. Беляев Ю. Н. Симметрические многочлены в расчётах матричной экспоненты // Вестник СыктГУ, Сер.1 Математика, механика, информатика, 2012. Вып. 16, С. 28-41.

II. Kalinin S.I. Flett’s theorem about the mean value and its generalizations

Text

References

  1. Flett T. M. A mean value theorem // Mathematical Gazette. 1958. Vol. 42, ќ 339. p. 38-39.
  2. Праздникова Е. В. Моделирование вещественного анализа в рамках аксиоматики для гипернатуральных чисел // Вестник Сыктывкарского университета. 2007. Сер. 1. Вып. 7. С. 41-66.
  3. Калинин С. И., Шихова А. В. Теорема Флетта в терминах односторонних производных // Математический вестник педвузов и университетов Волго-Вятского региона: Период. межвуз.сб. науч.-метод. работ. Выпуск 11. Киров: Изд-во ВятГГУ, 2009. С. 67-70.
  4. Калинин С. И. Теорема Флетта в терминах правосторонней производ-ной // Математика в образовании: Сб. статей. Вып. 8/Под ред. И. С. Емельяновой. Чебоксары: Изд-во Чуваш.ун-та, 2012. С. 275-278.
  5. Калинин С. И., Шихова А. В. Многомерный вариант теоремы Флетта //Математический вестник педвузов и университетов Волго-Вятского региона: Период. межвуз. сб. науч.-метод. работ. Выпуск 12. Киров: Изд-во ВятГГУ, 2010. С. 82-84.
  6. Калинин С. И. Теорема Флетта и ее обобщения // VI Уфимская международная конф., посв. 70-летию чл.-корр. РАН В. В. Напалкова: “Комплексный анализ и дифференциальные уравнения”: сборник тезисов. Уфа: ИМВЦ, 2011. С. 86-87.
  7. Finta B. A generalization of the Lagrange mean value theorem // Octogon. 1996. 4, № 2. p. 38-40.
  8. Калинин С. И. Теорема Ролля в контексте этапа обобщения работы с теоремой // Математика в школе. 2009. №3. С. 53-58.
  9. Брайчев Г. Г. Введение в теорию роста выпуклых и целых функций. М.:Прометей, 2005. 232 с.
  10.  Попов В. А. Новые основы дифференциального исчисления. Учеб. пособие для спецкурсов. Сыктывкар: “ПОЛИГРАФСЕРВИС”, 2002. 64 с.

III. Kostyakov Igor, KuratovVasiliy Schrodinger equations of RI systems

Text

The Schrodinger equation is derived by limiting transition of quantization procedure for relativistic particle.

References

  1. Ландау Л.Д., Лившиц Е.М. Квантовая механика (нерелятивистская теория).// М.: ФИЗМАТЛИТ, 2002. 808c.
  2. Henneaux M., Teitelboim C. Quantization of gauge systems. // Princeton Univ. Press, New Jersey, 1992. 540p.
  3. Deriglazov A, Rizzuti B.F. Reparametrization-invariant formulation of classical mechanics and the Schrodinger equation.// American Journal of Physics, V.79, N 8, 2011, Pp. 882-885. ArXiv:1105.0313 [math-ph].
  4. Дирак П.А.М. Лекции по квантовой механике. // Любое издание.
  5. Гитман Д.М., Тютин И.В. Каноническое квантование полей со связями.// М.: Наука, Гл.ред. физ.мат. лит., 1986. 216с.
  6. Уэст П. Введение в суперсимметрию и супергравитацию. // М.:Мир, 1989. 332с.

IV. Belyaeva N. A., Dovzhko E. S. Model of volume formation of the spherical product taking into account pressure

Text

The thermoviscoelastic model of volume formation of a polymeric product of a spherical form taking into account the nonzero critical depth of conversion of a hardening material is presented. Pressure is considered from a liquid layer on borders of the hardened part of a material. Results of the numerical analysis of dynamics of a tension, pressure are presented from a liquid layer on continuously growing firm part of a product.Keywords: thermoviscoelasticity, sphere, hardening, volume mode, critical depth of conversion, pressure, tension

References

  1. Беляева Н. А. Математические модели деформируемых структуриованных материалов. Монография. Изд-во СыктГУ, 2008. 116с.
  2. Беляева Н. А. Деформирование вязкоупругих материалов с изменяющейся структурой // Вестник Сыктывкарского университета.Сер1. Вып. 11. 2010. С. 52-75.
  3. Беляева Н. А. Деформирование вязкоупругих структурированных систем: монография. Lap Lambert Academic Publishing GmbH & Co. KG, Germany, 2011. 200 c.
  4. Беляева Н. А., Довжко Е. С. Отверждение сферического изделияс учетом давления перед фронтом // Вестн. Сыктывкарского ун-та.Сер.1: математ., мех., информ. Вып.12. 2010. С. 85-96.
  5. Довжко Е. С. , Беляева Н. А. Термовязкоупругое фронтальное отверждение сферического изделия с точки зрения непрерывно наращиваемого твердого тела с учетом давления перед фронтом отверждения. Федеральная служба по интеллектуальной собственности, патентам и товарным знакам РФ, Реестр программ для ЭВМ. Свидетельство о государственной регистрации программ для ЭВМ № 2010615793, 7 сентября 2010 г.
  6.  Беляева Н. А., Довжко Е. С. Напряженное состояние фронтально формируемого сферического изделия // Вестн. Удмуртского университета. Математика. Механика. Компьютерные науки. 2011. Вып. 2. С. 123-134.
  7. Отчет о научно-исследовательской работе в рамках федеральной целевой программы “Научные и научно-педагогические кадры инновационной России“ на 2009-2013 годы по теме: “Нелинейные модели и методы механики“, шифр 2010-1.1-112-024-024, № 02.740.11.0618(итоговый, этап № 6). Наименование этапа: “Отчетный“. М.: ВНТИЦ,2012. Инв. № 02301297038. 46 с.
  8. Довжко Е. С. , Беляева Н. А. Формирование осесимметричных полимерных изделий в режимах двустороннего фронта // Сб. статей Международной научно-практической конференции “Общество, Наука и Инновации“ 29-30 ноября 2013 г., в 4-х ч., Ч. 4., Уфа: РИЦ БашГУ, 2013. 272 с. С. 228-235.
  9. Беляева Н. А., Худоева Е. Е. Вычислительный комплекс “Термо вязкоупругие модели отверждения осесимметричных изделий“ // Вестн. Сыктывкарского ун-та. Сер.1: математ., мех., информ. Вып.14. 2011. C. 125-146.
  10. Беляева Н. А. Внутренние напряжения осесимметричных изделийв процессе их формирования с учетом ненулевой критической глубины конверсии // Вестн. Сыктывкарского университета. Сер.1. Вып. 16. 2012. С. 10-19.

V. Yermolenko A.V. Selecting a base surface in contact problems with a free boundary

Text

The contact problem for circular axisymmetric plates is considered. Values ofstress-strain state are compared using equations of Karman-Timoshenko-Naghdi reduced as to the lower face and to the middle surface.Keywords: theory of plates, contact problem, base surface.

References

  1. Ермоленко А.В. Теория плоских пластин типа Кармана-Тимошенко-Нагди относительно произвольной базовой плоскости // В мире научных открытий. Красноярск: НИЦ, 2011. №8.1 (20). C. 336-347.
  2. Ермоленко А.В. Об одном варианте уточненной теории плоских пластин для решения контактных задач // Вестник Сыктывкарского университета. Серия 1. Мат. Мех. Инф. №14. 2011.С. 105 110.
  3. Ермоленко А.В. Аналитическое решение контактной задачи дляжестко закрепленной пластины и основания // В мире научных открытий. Красноярск: НИЦ, 2011. С.11-17.
  4. Михайловский Е.И., Ермоленко А.В., Миронов В.В., Тулубенская Е.В. Уточненные нелинейные уравнения в неклассических задачах механики оболочек. Сыктывкар: Изд-во Сыктывкарского ун-та, 2009. 141 с.
  5. Михайловский Е.И., Тарасов В.Н. О сходимости метода обобщенной реакции в контактных задачах со свободной границей //Российская АН. ПММ. 1993. Т. 57. Выпуск 1. С. 128-136.

VI. Nikitenkov V., Kholopov A. A stability of a flexible beam: (the critical forms in a non-uniform environment)

Text

Based on [1],[2],[4]we investigate the critical forms and the number (N) of sign-changing of a beam placed to a flexible environment both for the case of uniform environment and for the case of non-uniform environment when the rigidies on two sides differ. In the uniform case we investigate N in regard to the rigidity parameter. In the non-uniform case and for any N we offer the algorithm for finding the exact critical form.

References

  1. Никитенков В.Л., Жидкова О.А., Шехурдина Е.С. Границы нахождения критической силы для разномодульной среды// Вестн.Сыктывкарск. ун-та. Сер. 1. – 2012. – Вып. 15. – С. 127 – 136.
  2. Никитенков В.Л., Холопов А.А. Устойчивость гибкого стержня вупругой среде// Вестн. Сыктывкарск. ун-та. Сер. 1. – 2012. – Вып. 16. – С. 60 – 79.
  3. Михайловский, Е.И. Элементы конструктивно-нелинейной механики/ Е.И. Михайловский. – Сыктывкар: Изд-во СыктГУ, 2011. -212 с.
  4. Холопов А.А. Минимальные формы потери устойчивости стержняна границе жесткой упругой сред // Вестн. Сыктывкарск. ун-та.Сер. 1. – 1995. – Вып. 1. – С. 217 – 233.
  5. Вольмир, А.С. Устойчивость деформируемых систем/ А.С. Вольмир. – М.: Наука, 1967. – 984 с.

VII. Tarasov V.N., AndryukovaV.Yu.  On the stability of the rings with unilateral restrictions on the moving

Text

The problem of the stability of the ring with one-sided restrictions on the movement analytically solved. Two cases of external pressure: normal pressure and the external pressure of the central forces are considered. A comparative analysis of obtained results is made.Keywords: ring, critical load, sustainability, non-stretchable thread, variational problem, deflection.

References

  1. Тарасов В.Н. Об устойчивости упругих систем при односторонних ограничениях на перемещения. // Труды института математики имеханики. Российская академия наук. Уральское отделение. Том 11,№ 1, 2005. С. 177-188.
  2. Андрюкова В.Ю., Тарасов В.Н. Об устойчивости упругих систем с неудерживающими связями. // Известия Коми НЦ УрОРАН. 2013. №3(15). С. 12-18.
  3. Феодосьев В.И. Избранные задачи и вопросы по сопротивлению материалов./ – М.: Наука, 1967. 376 с.

VIII. Mironov V.V., Overin N.A. Tehnology of MPI of the solution of thestationary equation of heat conductivity

Text

In this work developed two parallel algorithms for finding solutions of the stationary heat conduction equation.

References

  1. Самарский А.А. Теория разностных схем. М. Наука. Гл. ред. физ.-мат. лит., 1989. 616 с.
  2. Антонов А.С. Параллельное программирование с использованием технологии MPI. М. Изд-во МГУ, 2004 . 71 с.
  3. Воеводин В.В., Воеводин В.В. Параллельные вычисления. СПб.: БХВ-Петербург, 2002. 602 с.

Leave a Comment