I. Грытчук A. Достаточные и необходимые условия для решения гипотезы Била
В 1993 году Эндрю ”Энди“ Бил (Andrew ”Andy“ Beal) высказал гипотезу: Если (∗) ax + by = cz, где a, b, c, x, y, z — положительные целые числа и x, y, z строго больше 2, то a, b и c должны иметь общий простой делитель. В работе получено необходимое и достаточное условие решение уравнения (∗) в положительных целых числах a, b, c, x, y, z, таких, что x > 2, y > 2, z > 2 и числа a, b, c попарно взаимно просты иby>ax.
Ключевые слова: гипотеза Била, диофантовы уравнения, простой делитель.
Список литературы
- Redmond D. Number Theory, Mercel Dekker, Inc. New York. Basel.Hong–Kong, 1996.
- Sierpinski W. Elementary Number Theory, PWN Warszawa, 1987.
II. Бестужев А. С., Вечтомов Е. М. Циклические полукольца с коммутативным сложением
В статье рассматриваются полукольца с циклическим умножением -полукольца, в которых каждый элемент, возможно, кроме нуля, является целой неотрицательной степенью образующего элемента. Вначале рассматриваются частные случаи таких полуколец, когда нуль или единица будет натуральной степенью образующего элемента. Затем выясняется, как устроены циклические полукольца в общем случае, и среди таких объектов изучаются полукольца с неидемпотентным сложением.
Ключевые слова: полукольцо, циклическое полукольцо, образующий элемент, поглощающий элемент, циклическая полугруппа, неидемпотентное сложение.
Список литературы
- BestugevA. S., VechtomovE. M. Mulitiplicati velycyclic semirings // XIII Международная научная конференция им. академика М. Кравчука. Киев: Национальный технический университет Украины, 2010. Т. 2. С. 39.
- Golan J. S. Semirings and their applications. Dordrecht: Kluwer Academie Publishers. 1999. 381 p.
- Бестужев А. С. Конечные идемпотентные циклические полукольца //Математический вестник педвузов и университетов Волго–Вятского региона. 2011. Вып. 13. С. 71–78.
- Бестужев А. С. О строении конечных мультипликативно–циклических полуколец // Ярославский педагогический вестник.2013. Т. III. № 2. С. 14–18.
- Бестужев А. С., Вечтомов Е. М., Лубягина И. В. Полукольцас циклическим умножением // Алгебра и математическая логика: Международная конференция посвященная 100-летию В. В. Морозова. Казань: КФУ, 2011. С. 51–52.
- Вечтомов Е. М. Введение в полукольца : пособие для студентов иаспирантов. Киров: Изд-во Вятского гос. пед. ун-та, 2000. 44 с.
- Вечтомов Е. М., Лубягина И. В. Циклические полукольца сидемпотентным некоммутативным сложением // Фундаментальнаяи прикладная математика. 2012. Т. 17. Вып. 1. С. 33—52.
III. Калинин С. И. Уточнения неравенства ки фана методом несобственного интеграла
Ключевые слова: неравенство Ки Фана, метод несобственного интеграла.
Список литературы
- Калинин С. И. Средние величины степенного типа. НеравенстваКоши и Ки Фана : учебное пособие по спецкурсу. Киров: Изд-воВГГУ, 2002. 368 с
- Калинин С. И., Шалыгина М. Ю. Несобственный интеграл помогает уточнить весовые неравенства Коши и Ки Фана // Информатика. Математика. Язык : науч. журнал. Киров: Изд-во ВятГГУ,2013. Вып. 7. С. 70–72.
IV. Пименов Р. Р. Аналог производной в теории чисел и применение его для доказательства частных случаев теоремы дирихле
В статье изучаются числа вида (xp − 1)/(x − 1) и находятся свойства их простых делителей. Это позволяет доказать частный случай теоремы Дирихле о бесконечности простых чисел в арифметической последовательности. Все рассмотрение основано на вводимом понятии «p-дифференцируемости» целочисленной функции и использует малую теорему Ферма.
Ключевые слова: теория чисел, малая теорема Ферма, теорема
Дирихле.
Список литературы
- Бухштаб A. A. Теория чисел. М.: Просвещение, 1966. 384 с.
- Пименов Р. Р. О нестандартном применении методов математического анализа к теории чисел // Математический вестник педвузов и университетов Волго-Вятского региона : периодический межвузовский сборник научно-методических работ. Киров: Научн. изд-во ВятГУ, 2016. Вып. 18. С. 198–201.
V. Попов В. А. О дифференциальных теоремах о среднем для функций комплексного переменного
Обоснована невозможность вывода аналогов дифференциальных теорем Ролля, Лагранжа и Коши о средних на определенных классах аналитических функций, если даже дифференциальная средняя величина (точка C) ищется на более широком множестве, чем отрезок. Выделен класс полно дифференцируемых функций, для которых точка из равенства Лагранжа принадлежит некоторому кругу, содержащему первоначально заданные точки. Дано простое доказательство неравенства Лагранжа о среднем и традиционного критерия стационарности функции комплексного переменного на области.
Ключевые слова: формула Лагранжа конечных приращений, условие существования укороченной согласованной хорды, полная
производная функции в точке, неравенство Лагранжа о среднем.
Список литературы
- Popov V. А. П-derivative and analytical functions // Mathematic sand Science Education in the North-East of Europe: History,Traditions Contemporary Issues. Proceedings of the Sixth Inter Karelian Conferen ce Sortavala, Russia. 11–14 September, 2003.Pp. 59–62.
- Боярчук А. К. Справочное пособие по высшей математике. Т. 4:Функции комплексного переменного: теория и практика. М.: Едиториал УРСС, 2001. 352 с.
- Ловягин Ю. Н., Праздникова Е. В. Элементарные функциина множестве комплексных гиперрациональных чисел // Вестник Сыктывкарского университета. Сер. 1. Вып. 9. 2009. С. 30–42.
- Пименов Р. Р. О нестандартном применении методов математического анализа к теории чисел // Математический вестник педвузов и университетов Волго-Вятского региона : периодический межвузовский сборник научно-методических работ. Киров: Науч.изд-во ВятГУ, 2016. Вып. 18. С. 198–201.
- Полиа Г., Сеге Г. Задачи и теоремы из анализа. Часть вторая:Теория функций (специальная часть). Распределение нулей. Полиномы. Определители. Теория чисел. М.: Наука, 1978. 432 с.
- Попов В. А. Новые основы дифференциального исчисления : учебное пособие для спецкурсов. Сыктывкар: Изд-во КГПИ, 2002. 64 с.
- Попов В. А. Изложение ТФКП на основе понятия полной производной // Проблемы теории и практики обучения математике : cб.науч. работ, представленных на Международную науч. конф. <58Герценовские чтения>. СПб.: Изд-во РГПУ им. А. И. Герцена, 2005.С. 270–276.
- Попов В. А. Преднепрерывность. Производные. П-аналитичность.Сыктывкар: Коми пединститут, 2011. 228 с.
- Праздникова Е. В. Моделирование вещественного анализа в рамках аксиоматики для гипернатуральных чисел // Вестник Сыктывкарского университета. Сер. 1. Вып. 7. 2007. С. 41–66.
- Рудин У. Основы математического анализа. М.: Мир, 1976. 320 с.
VI. Асадуллин Ф. Ф., Котов Л. Н., Устюгов В. А. Устройство поточного шифрования на основе плис
В статье описана математическая модель ферромагнитных гранулированных пленок, позволяющая рассчитать поля размагничивания и частоты ферромагнитного резонанса (ФМР). Пленки представляются как ансамбли частиц эллипсоидальной формы. Описаны возможные варианты ориентации частиц относительно внешнего подмагничивающего поля, для приведенных
случаев рассчитаны частоты ФМР.
Ключевые слова: тонкие композитные пленки, ферромагнетизм, размагничивающее поле.
Список литературы
- Dubowik J. Shape anisotropy of magnetic heterostructures // Phys.Rev. B. 1996. Vol. 54, no. 2. Pp. 1088–1091.
- Ishii Y., Okamoto T., Nishina H. Particle length and orientationdi stributions in magnetic recording media // JMMM. 1991. Vol. 98. Pp.210–214.
- Мейлихов Е. З., Фарзетдинова Р. М. Ультратонкие плёнкиCo/Cu(110) как решётки ферромагнитных гранул с дипольным взаимодействием // Письма в ЖЭТФ. 2002. Т. 75. №3. С. 170–174.
VII. Мужикова А. В. Интерактивное обучение математике в вузе
В работе раскрываются сущность, задачи и принципы интерактивных форм обучения, а также сущность, принципы и методы коллективных учебных занятий как одного из способов проведения учебных занятий в вузе в интерактивной форме. Существующие способы организации и методики коллективных учебных занятий адаптированы и уточнены с целью использования их при обучении математике в техническом вузе.Ключевые слова: интерактивные формы обучения, коллективные
учебные занятия, высшая математика.
Список литературы
- Белозерцев Е. П., Гонеев А. Д., Пашков А. Г. и др. Педагогика профессионального образования : учебное пособие / под ред.В. А. Сластенина. М.: Академия, 2004. 368 с.
- Гузеев В. В. Методы и организационные формы обучения. М. :Народное образование. 2001. С. 54–55.
- Лебединцев В. Б. Модифицированные программы для разновозрастных коллективов на ступени основного общего образования. Биология. Химия. География: методическое пособие. Красноярск,2009. 84 с.
- Лебединцев В. Б., Горленко Н. М. Позиции педагогов при обучении по индивидуальным образовательным программам // Народное образование. 2011. №9. С. 224–231.
- Лебединцев В. Б., Горленко Н. М., Запятая О. В., Клепец Г. В. Новые модели обучения в малочисленных сельских школах: институциональные системы обучения на основе индивидуальных учебных маршрутов и индивидуальных образовательных программ учащихся : методическое пособие / под ред. В. Б. Лебединцева. Красноярск, 2010. 152 с.
- Литвинская И. Г. Коллективные учебные занятия: принципы, фазы, технология // Экспресс-опыт: приложение к журналу «Директор школы». 2000. №1. С. 21–26.
- Мкртчян М. А. Методики коллективных учебных занятий //Справочник заместителя директора школы. 2010. №12. С. 50–63.
- Мкртчян М. А. Концепция коллективных учебных занятий //Школьные технологии. 2011. №2. С. 65–72.
- Сорокопуд Ю. В. Педагогика высшей школы : учебное пособие.Ростов н/Д: Феникс, 2011. 541 с
- Шамова Т. И., Давыденко Т. М., Шибанова Г. Н. Управление образовательными системами : учебное пособие. М.: Издательский центр «Академия», 2002. 384 с.
VIII. Ермоленко А. В., Гинтнер А. Н. Влияние поперечных сдвигов на понижение напряженного состояния пластины
В теории пластин типа Кармана – Тимошенко –Нагди, учитывающей трансверсальные деформации, моменты состоят из двух составляющих — моменты от кривизны срединной поверхности и моменты от изменения поперечных сдвигов. Показано, что при контактном взаимодействии пластины с абсолютно жестким основанием графики составляющих моментов в области максимальных значений находятся в противофазе, что приводит к снижению максимальных значений совокупного момента.
Ключевые слова: уточненная теория пластин, контактная задача, противофаза.
Список литературы
- Ермоленко А.В. О контактном взаимодействии цилиндрически изгибаемой пластины с абсолютно жестким основанием //Нелинейные проблемы механики и физики деформируемого тела :тр. научной школы акад. В.В.Новожилова. СПб.: СПбГУ, 2000.Вып. 2. С. 79–95.
- Ермоленко А.В. Теория плоских пластин типа Кармана – Тимошенко – Нагди относительно произвольной базовой плоскости //В мире научных открытий. Красноярск: НИЦ, 2011. № 8.1 (20).C. 336–347.
- Михайловский Е.И., Бадокин К.В., Ермоленко А.В. Теория изгиба пластин типа Кармана без гипотез Кирхгофа // Вестник Сыктывкарского университета. Серия 1. Мат. Мех. Инф. 1999.Вып. 3. С. 181–202.
- Михайловский Е.И., Ермоленко А.В., Миронов В.В., Тулубенская Е.В. Уточненные нелинейные уравнения в неклассических задачах механики оболочек. Сыктывкар: Изд-во Сыктывкарского университета, 2009. 141 с.
- Михайловский Е.И., Тарасов В.Н. О сходимости метода обобщенной реакции в контактных задачах со свободной границей //РАН. ПММ. 1993. Т. 57. Вып. 1. С. 128–136.
IX. Исаков В. Н., Никитенков В. Л., Попов В. А. К семидесятилетию профессора одинца владимира петровича
Список литературы
- Вершик А. М., Виро О. Я., Исаков В. Н., Леонов Г. А.,ПратусевичМ.Я., Хавин В.П., Широков Н.А. Одинец Владимир Петрович (к шестидесяти пятилетию со дня рождения) //Владикавказский математический журнал. 2010, Т. 12. Вып. 4.С. 79–81.
- Попов В.А. Кафедра математики Коми пединститута: история становления и развития. Сыктывкар: Коми пединститут, 2012.216 с.