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ON THE DIOPHANTINE EQUATION 2?2 — dy? = 2"
A. Grytczuk

In this Note we remark that there is some duality connected with
the problem of solvability of the Diophantine equation

(*) 2% — dy? = 2".

Namely, we prove that the equation (*) has no solution in positive
integers xz,y for every pime z = ¢* generated by an arithmetic
progression and for every odd positive integer n if d is squarefree
positive integer such that p | d, where p is an odd prime.
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1. Introduction. In 1770 Euler obtained integral solutions of the
Diophantine equation
(1)  az® —dy? = 23

Denoting by A, D the square roots of a and d ,respectively and assuming
that

(2) Az + Dy = (Au+ Dv)?

and replacing D by —D for the like equation we obtain the following
formulas for the integer solutions of the equation (1):

(3) z = u(au? + 3dv?), y=v(3au® + dv?), z = au® — dv>.

Euler remarked also that this method is fals to give integer solution with

y = 1, when a = 2 and d = 5.Indeed, in this case the equation (1) reduces
to the form:

(4) 22? — 5 =25,

but the formulas (3) we can’t obtained the solution # = 4,z = 3 of the
equation (4).

In 1769 Lagrange extended Euler’s method by the following way; let the
equation
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(5) & —dn® = ({+ Dn) (€~ Dn)
for d = D? has the property that its product by u? — dv? is equal to
22 — dy?, where

(6) x + Dy = (£+ Dn) (u+ Dv),

whence

(7) z=¢&u+dn, y==E&v+nu.

Putting £ = u,n = v and concluding that 2?> — dy? = 22 holds if
z = u? 4+ dv?,y = 2uv, z = u® — dv? then the factors in the second member
of (6) are equal.

Next, we observe that these values of x and y are news values of £ and
5

(8) € = u? + dv?,n = 2uv, € + Dy = (u+ Dv)?,

and consequently we obtain that the Diophantine equation (1) has the
solutions given by the formulas (3) for a = 1.

A repetition of this process leads to certain integer solutions of the
Diophantine equation:

(*) 2? — dy? = 2",

but this method rarely gives all integer solutions of (*) (Cf.|3]).Some
further investigations concerning solvability of the Diophantine equation
(*) are given by Ward [4], Czech [1| and Czech and Wieczorkiewicz [2].

In this paper we note that there is some duality connected with the
problem of solvability of the Diophantine equation (*).

Namely,we prove, in contrast to the fact that the equation (*) has
infinitely many solutions in positive integers x, ¥, z; in general, that for some
fixed squarefree positive integer d and prime p such that p | d

there are infinitely many primes ¢*such that for every z = ¢* and every
odd natural number n > 1, the Diophantine equation (*) has no solutions
in integers x, y. The following theorem is true:

Theorem. Let p be an odd prime such that p | d ,where d is
a squarefree positive integer. Then for every prime ¢q* = z  from the
arithmetic progression of the form; 8pm~+pjo+r, with pjo+r =5( mod 8)

where (%) = —1 and every odd positive integer n, the Diophantine
equation (*) has no solutions in integers x,y.

2. Proof of the Theorem

Let p | d , where p is an odd prime and let r be quadratic non-residues
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for p, so (%) = —1. it is easy to see that the numbers of the form: pj + r

give distinct residues mod 8. Hence, for some j = jg, we have
(2.1) pjo+r=5( mod8).
Now, we can consider the positive integers a,, of the following form:
(2.2) am =p(Bm+jo) +1r =8pm+pjo +r.

We oserve that the greatest common divisor of the numbers 8p and
pjo + r is equal to one, so (8p.pjo + 1) = 1.

Indeed, suppose that (8p, pjo + r) = k > 1.Then there is a prime ¢ such
that ¢ | k. Hence, from the property of the greatest common divisor and
divisibility relation ,we get

(2.3) q|8p, qlpjo+r.

From (2.3) we obtain that ¢ = p and ¢ | 7, so p | r,s0 is impossible,
because (%) = —1.

Since (8p,pjo+7) = 1, then by Dirichlet theorem on arithmetic

progressions it follows that the arithmetic progression given by (2.2)
contains infinitely many primes.

Let for some positive integer m = m, the number a,, generated by
arithmetic progresson (2.2) is a prime number, so a,,, = ¢*.Then by (2.1)
and (2.2) it follows that

(2.4) ¢*=5( mod 8).

By the assumption of the Theorem and well-known properties of
Legendre’s symbol it follows that

(2.5) <%) _ <8pm+;jo+r) _ (]_)> .

Suppose that the Diophantine equation (*) has a solution in integers x, y
and z = ¢* for some odd positive integer n.Hence,we have

(2.6) 2* —dy* = (q")",

where p | d for some odd prime p.
From (2.6) we obtain that

(2.7) 2?2 = (¢")" ( mod d).

Since p | d then by (2.7) it follows that (¢*)" is a quadratic residues
mod p,so we have

(2.8) (%) — 1.
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From (2.5) and the assumption that n = 2k + 1 and well-known
properties of the Legendre symbol ,we obtain

o) ()= (5= (5)" (8) = trm 0= .

We see that the equality (2.9) contrary to the equality (2.8) and the
proof of the Theorem is complete.ll

From the Theorem immediately follows of the following Corollary:

Corollary. There are infinitely many primes ¢* = 5( mod 8) such that
each of them can’t be representable by the quadratic form x? —dy? with some
squarefree positive integer d.
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