УДК 511.92

ON THE DIOPHANTINE EQUATION $x^2 - dy^2 = z^n$

A. Grytczuk

In this Note we remark that there is some duality connected with the problem of solvability of the Diophantine equation

(*)
$$x^2 - dy^2 = z^n$$
.

Namely, we prove that the equation (*) has no solution in positive integers x, y for every pime $z = q^*$ generated by an arithmetic progression and for every odd positive integer n if d is squarefree positive integer such that $p \mid d$, where p is an odd prime.

Keywords: solvability of the Diophantine equation.

1. Introduction. In 1770 Euler obtained integral solutions of the Diophantine equation

(1)
$$ax^2 - dy^2 = z^3$$
.

Denoting by A,D the square roots of a and d , respectively and assuming that

$$(2) Ax + Dy = (Au + Dv)^3$$

and replacing D by -D for the like equation we obtain the following formulas for the integer solutions of the equation (1):

(3)
$$x = u (au^2 + 3dv^2)$$
, $y = v (3au^2 + dv^2)$, $z = au^2 - dv^2$.

Euler remarked also that this method is fals to give integer solution with y = 1, when a = 2 and d = 5. Indeed, in this case the equation (1) reduces to the form:

$$(4) \ 2x^2 - 5 = z^3,$$

but the formulas (3) we can't obtained the solution x = 4, z = 3 of the equation (4).

In 1769 Lagrange extended Euler's method by the following way; let the equation

(5)
$$\xi^2 - d\eta^2 = (\xi + D\eta)(\xi - D\eta)$$

for $d=D^2$ has the property that its product by u^2-dv^2 is equal to x^2-dy^2 , where

(6)
$$x + Dy = (\xi + D\eta)(u + Dv)$$
,

whence

(7)
$$x = \xi u + d\eta v, \ y = \xi v + \eta u.$$

Putting $\xi=u,\eta=v$ and concluding that $x^2-dy^2=z^2$ holds if $x=u^2+dv^2,y=2uv,z=u^2-dv^2$ then the factors in the second member of (6) are equal.

Next, we observe that these values of x and y are news values of ξ and η ;

(8)
$$\xi = u^2 + dv^2$$
, $\eta = 2uv$, $\xi + D\eta = (u + Dv)^2$,

and consequently we obtain that the Diophantine equation (1) has the solutions given by the formulas (3) for a = 1.

A repetition of this process leads to certain integer solutions of the Diophantine equation:

(*)
$$x^2 - dy^2 = z^n$$
,

but this method rarely gives all integer solutions of (*) (Cf.[3]). Some further investigations concerning solvability of the Diophantine equation (*) are given by Ward [4], Czech [1] and Czech and Wieczorkiewicz [2].

In this paper we note that there is some duality connected with the problem of solvability of the Diophantine equation (*).

Namely,we prove, in contrast to the fact that the equation (*) has infinitely many solutions in positive integers x, y, z; in general, that for some fixed squarefree positive integer d and prime p such that $p \mid d$

there are infinitely many primes q^* such that for every $z = q^*$ and every odd natural number $n \ge 1$, the Diophantine equation (*) has no solutions in integers x, y. The following theorem is true:

Theorem. Let p be an odd prime such that $p \mid d$, where d is a squarefree positive integer. Then for every prime $q^* = z$ from the arithmetic progression of the form; $8pm+pj_0+r$, with $pj_0+r \equiv 5 \pmod 8$ where $\left(\frac{r}{p}\right) = -1$ and every odd positive integer n, the Diophantine equation (*) has no solutions in integers x, y.

2. Proof of the Theorem

Let $p \mid d$, where p is an odd prime and let r be quadratic non-residues

39

for p, so $\left(\frac{r}{p}\right) = -1$. it is easy to see that the numbers of the form: pj + r give distinct residues $\mod 8$. Hence, for some $j = j_0$, we have

(2.1)
$$pj_0 + r \equiv 5 \pmod{8}$$
.

Now, we can consider the positive integers a_m of the following form:

$$(2.2) a_m = p(8m + j_0) + r = 8pm + pj_0 + r.$$

We oserve that the greatest common divisor of the numbers 8p and $pj_0 + r$ is equal to one, so $(8p \cdot pj_0 + r) = 1$.

Indeed, suppose that $(8p, pj_0 + r) = k > 1$. Then there is a prime q such that $q \mid k$. Hence, from the property of the greatest common divisor and divisibility relation, we get

$$(2.3)$$
 $q \mid 8p, q \mid pj_0 + r.$

From (2.3) we obtain that q = p and $q \mid r$, so $p \mid r$,so is impossible, because $\left(\frac{r}{p}\right) = -1$.

Since $(8p, pj_0 + r) = 1$, then by Dirichlet theorem on arithmetic progressions it follows that the arithmetic progression given by (2.2) contains infinitely many primes.

Let for some positive integer $m=m_0$ the number a_{m_0} generated by arithmetic progresson (2.2) is a prime number, so $a_{m_0}=q^*$. Then by (2.1) and (2.2) it follows that

(2.4)
$$q^* \equiv 5 \pmod{8}$$
.

By the assumption of the Theorem and well-known properties of Legendre's symbol it follows that

$$(2.5) \left(\frac{q^*}{p}\right) = \left(\frac{8pm + pj_0 + r}{p}\right) = \left(\frac{r}{p}\right) = -1.$$

Suppose that the Diophantine equation (*) has a solution in integers x, y and $z = q^*$ for some odd positive integer n. Hence, we have

$$(2.6) \quad x^2 - dy^2 = (q^*)^n \, .$$

where $p \mid d$ for some odd prime p.

From (2.6) we obtain that

(2.7)
$$x^2 \equiv (q^*)^n \pmod{d}$$
.

Since $p \mid d$ then by (2.7) it follows that $(q^*)^n$ is a quadratic residues mod p,so we have

(2.8)
$$\left(\frac{(q^*)^n}{p}\right) = +1.$$

From (2.5) and the assumption that n = 2k + 1 and well-known properties of the Legendre symbol, we obtain

$$(2.9) \quad \left(\frac{(q^*)^n}{p}\right) = \left(\frac{q^*}{p}\right)^n = \left(\frac{q^*}{p}\right)^{2k} \left(\frac{q^*}{p}\right) = (+1)(-1) = -1.$$

We see that the equality (2.9) contrary to the equality (2.8) and the proof of the Theorem is complete.

From the Theorem immediately follows of the following Corollary:

Corollary. There are infinitely many primes $q^* \equiv 5 \pmod{8}$ such that each of them can't be representable by the quadratic form $x^2 - dy^2$ with some squarefree positive integer d.

References

- 1. **J.Czech**, On the equation $x^2 Dy^2 = z^k$ with D = 2, 3, 5, 7, 11, 13// Funct. Approx. Comment. Math. 16(1988), 77-79.
- 2. **J.Czech and J.Wieczorkiewicz**, An application of matrices to parametrization of the equation $3x^2 2y^2 = z^k //$ Discuss. Math. 8(1986), 45-52.
- 3. **L.E.Dickson**, Introduction to the Theory of Numbers. Dower Publ. Inc. New York, 1957.
- 4. **M.Ward**, The Diophantine equation $x^2 dy^2 = z^M / Trans.$ Amer. Math. Soc. 38 (1935), 447–457.

Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra, ul. Prof. Szafrana 4a,65-516 Zielona Góra, Poland and

Western Higher School of Marketing and Internationale Finances pl. Słowiański 9, 65-069 Zielona Góra, Poland

e-mail: A. Grytczuk@wmie.uz.zgora.pl or

e-mail: algrytczuk@onet.pl

Поступила 07.02.2011