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CHOOSABILITY OF P-FREE GRAPHS!

Petr A. Golovach, Pinar Heggernes

A graph is k-choosable if it admits a proper coloring of its vertices
for every assignment of k (possibly different) allowed colors to choose
from for each vertex. It is NP-hard to decide whether a given graph is
k-choosable for k£ > 3, and this problem is considered strictly harder
than the k-coloring problem. Only few positive results are known on
input graphs with a given structure. Here, we prove that the problem
is fixed parameter tractable on Ps-free graphs when parameterized by
k. This graph class contains the well known and widely studied class of
cographs. Our result is surprising since the parameterized complexity
of k-coloring is still open on Ps-free graphs. To give a complete picture,
we show that the problem remains NP-hard on Ps-free graphs when &
is a part of the input.

1. Introduction

Graph coloring is one of the most well known and intensively studied
problems in graph theory. The k-COLORING problem asks whether the
vertices of an input graph G can be colored with k& colors such that no
pair of adjacent vertices receive the same color (such coloring is also called
a proper coloring). This problem is known to be NP-complete even when
k > 3 is not a part of the input but a fixed constant.

Vizing [23] and ErdHos et al. [7] introduced a version of graph coloring
called list coloring. In list coloring, a set L(v) of allowed colors is given
for each vertex v of the input graph, and we want to decide whether
a proper coloring of the graph exists such that each vertex v receives a
color from L(v). If G has a list coloring for every assignment of lists of
cardinality & to its vertices, then G is said to be k-choosable. Hence the
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k-CHOOSABILITY problem asks whether an input graph G is k-choosable.
List coloring has received increasing attention since the beginning of 90’s,
and there are very good surveys [1,21]| and books [14] on the subject. It
is proved to be a very difficult problem; Gutner and Tarsi [11| proved
that k-CHOOSABILITY is II¥-complete for bipartite graphs for any fixed
k > 3, whereas 2-CHOOSABILITY can be solved in polynomial time [7].
The 3-CHOOSABILITY and 4-CHOOSABILITY problems remain I17'-complete
for planar graphs, whereas any planar graph is 5-choosable [20|. Due to
these hardness results, upto the assumption that NP is not equal to co-NP,
CHOOSABILITY is strictly harder than COLORING on general graphs [1].

Despite being a difficult problem to deal with, CHOOSABILITY has
applications in a large variety of areas, like various kinds of scheduling
problems, VLSI design, and frequency assignments [1]|. Consequently, any
attempt to solve this problem is of interest, and we attack it using structural
information on the input and parameterized algorithms. A problem is fixed
parameter tractable (FPT) if its input can be partitioned into a main part
(typically the input graph) of size n and a parameter (typically an integer)
k so that there is an algorithm that solves the problem in time O(n¢- f(k)),
where f is a computable function dependent only on k, and ¢ is a fixed
constant independent of input [6]. In this case, we say that the problem is
FPT when parameterized by k. The field of parameterized algorithms and
fixed parameter complexity /tractability has been flourishing during the last
decade, with many new results appearing every year in high level conferences
and journals, and it has been enriched by several new hooks [8,18|.

In this paper, we show that k-CHOOSABILITY is fixed parameter
tractable on Ps-free graphs. These are graphs containing no induced copy
of a simple path on 5 vertices, and this graph class contains the class
of cographs that has been subject to extensive theoretical study [3]. An
interesting point to mention is that the fixed parameter tractability of
k-COLORING on Ps-free graphs is still open [12|. As mentioned above,
CHOOSABILITY is more difficult than COLORING on general graphs. Our
result indicates that the opposite might be true for the class of Ps-free
graphs. Hoang et al. showed that k-COLORING can be solved in polynomial
time for any fixed & on Ps-free graphs [12], but in their running time &
contributes to the degree of the polynomial. Furthermore, k-COLORING is
NP-complete on Ps-free graphs when k is a part of input [15]. To give a
complete picture, here we show that k-CHOOSABILITY is NP-hard on P;-
free graphs when k is a part of input. Thus fixed parameter tractability is
the best we can expect to achieve for k-CHOOSABILITY on this graph class.

To mention other existing results on the coloring problem on graphs
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that do not contain long induced paths, 3-COLORING has a polynomial-
time solution on Ps-free graphs [19], 5-COLORING is NP-complete for Ps-
free graphs [24], 4-COLORING is NP-complete for Py-free graphs [16], and 6-
COLORING is NP-complete for Pr-free graphs [4]. Also, the LisT COLORING
problem is NP-complete for lists of size at most three even for complete
bipartite graphs [13] (see also Lemma 1).

2. Definitions and preliminaries

We consider finite undirected graphs without loops or multiple edges. A
graph is denoted by G = (V| E), where V' = V(G) is the set of vertices and
E = E(Q) is the set of edges. For a vertex v € V., the set of vertices that
are adjacent to v is called the neighborhood of v and denoted by Ng(v) (we
may omit index if the graph under consideration is clear from the context).
The degree of a vertex v is deg(v) = |N(v)|. The average degree of G is
d(G) = ﬁ Y vev deg(v). For a vertex subset U C V' the subgraph of G

induced by U is denoted by G[U]. A set U C V is a clique if all vertices
in U are pairwise adjacent in G. A set of vertices U is a dominating set if
for each vertex v € V, either v € U or there is a vertex u € U such that
v € N(u). We also say that a subgraph H of G is dominating if V/(H) is a
dominating set. We denote by G — U the graph G[V \ U], and by G — u the
graph G[V \ {u}] for u € V.

A wertez coloring of a graph G = (V) E) is an assignment ¢: V' — N of
a positive integer (color) to each vertex of G. The coloring ¢ is proper if
adjacent vertices receive distinct colors. Assume that each vertex v € V' is
assigned a color list L(v) C N, which is the set of admissible colors for v. A
mapping ¢: V — Nis a list coloring of G if ¢ is a proper vertex coloring and
c(v) € L(v) for every v € V. For a positive integer k, G is k-choosable if G
has a list coloring for every assignment of color lists L(v) with |L(v)| = k
for all v € V. The choice number (also called list chromatic number) of G,
denoted ch(G), is the minimum integer k£ such that G is k-choosable. The
k-CHOOSABILITY problem asks for a given graph G and a positive integer
k, whether G is k-choosable. It is known that dense graphs have large choice
number [1], as indicated by the following result.

Proposition 1 ( [1]). Let G be a graph and s be an integer. If

a0 1) z(*)

then ch(G) > s.



Choosability of Ps-free graphs 129

By P, we denote the graph on vertex set {vy,vs,...,v,} and edge set
{v1v9, V203, ..., v,_1v. }. A graph is P,-free if it does not contain P, as
an induced subgraph. Cographs are the class of P,-free graphs, and they
are contained in the class of Ps-free graphs. These graph classes can be
recognized in polynomial time. The following structural property of Ps-free
graphs was proved by Bacsé and Tuza [2].

Proposition 2 ( [2|). Every connected Ps-free graph has either a dominating
clique or a dominating Ps.

It follows from the results of [2] that such a clique or path can be
constructed in polynomial time.

Finally, we distinguish between the parameterized and the non-paramete-
rized versions of our problem. In the CHOOSABILITY problem, G and k
are input. We denote by k-CHOOSABILITY the version of the problem
parameterized by k.

3. Fixed parameter tractability of choosability
problems on Ps-free graphs

3.1. k-CHOOSABILITY is FPT on Ps-free graphs
In this section we prove that k-CHOOSABILITY is fixed parameter
tractable on Ps-free graphs.

THEOREM 1. The k-CHOOSABILITY problem is FPT on Ps-free
graphs.

Proof. We give a constructive proof of this theorem by describing a
recursive algorithm based on Propositions 1 and 2 that checks whether
ch(G) < k. We assume that k > 3, since for k < 2, k-CHOOSABILITY
can be solved in polynomial time for general graphs [7]. If G is disconnected,
then ch(G) is equal to the maximum choice number of the connected
components of G. Thus we also assume that G is connected.

Our algorithm uses as its main tool a procedure called Color, given
in Algorithm 1. This procedure takes as input a connected Ps-free graph
G and a set W = {w;,...,w,} C V(G) with a sequence of color
lists £ = (L(wy),..., L(w;)), each of size k. For the notation in this
procedure, we let L = L(w;) U --- U L(w,), and we denote I =
max{max L(w;),...,max L(w,)}. Let also L = L(w;) X ««+ X L(w,)
and X = 2L We say that vertices wq,...,w, are colored by ¢ =
(€1y...5¢.) € L if each w; is colored by ¢;. Set H = G — W. Procedure
Color produces an output which either contains a list of different sets
X = (X1,...,Xs), X; € X, such that for any assignment of color lists
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Procedure Color(G, W, L)

Find a dominating set U = {uy,...,up} of H = G — W, such
that U is a clique or U induces a Ps;
Let X = 0;

if p > k then Return(INO), Halt;
if d(G[W U U]) > d then Return(INO), Halt;
forall Color lists L(u1),...,L(up) C {1,...,, 1+ 1,...,l 4+ kp}, s.t.
|L(ui)| = k do
if U =V (H) then
Let X = (;
forall List colorings s of H do
| Let X := X U{c € L: c(w;) # s(uj) if wyu; € E(G)};
| if X # 0 then Add(X, X); else Return(NO), Halt;
if U # V(H) then
Let Hy,...,H,; be the connected components of H — U,
and let F; = GIW UU UV (H;)] for ¢ € {1,...,q};
Let £' = (L(u1),...,L(up)), ' =1L X L(u1) X --+ X L(up);
for 2 =1 to q do
Color(F;, WUU,LUL);
if the output is NO then
| Return(NO), Halt;

else
| Let X; be the output;

Let Y = Xi;
for 2 = 2 to q do

Let Z = (;

forall X € X; and Y € Y do

if X NY # 0 then Add(Z,X N X');

L else Return(NO), Halt;
| Let Y = Z;
forall Z € Z do
Let X = {(c(w1)y...,c(wy)): ¢ € Z,c(w;) #
c(uj) if wiju; € E(G) and c(u;) # c(uj) if u;u; €
E(G)};
if X # 0 then Add(X, X);
else Return(NO), Halt;

if X =0 then Return(INO), Halt; else Return(X).

Algorithm 1: Pseudo code for the procedure Color
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of size k to vertices of H, there is a set X; with the property that any
c € X; can be used for coloring of W with respect to adjacencies between
vertices in W and vertices in V (H), or the output contains "NO” if there is
a list assignment for vertices of H such that no list coloring exists. Denote
d= 4(’“,:) 10g(2(k,:)). The subroutine Add(A, a) adds the element a to the
set A if a € A, and the subroutine Halt stops the algorithm. Our main
algorithm calls Procedure Color(G, @, ). To simplify the description of the
algorithm it is assumed that for W = @, I contains unique zero coloring
(i.e. L is non empty). If the output is "NO” then G is not k-choosable, and
otherwise G is k-choosable.

To prove the correctness of the algorithm, let us analyze one call of
Procedure Color. Since each induced subgraph of a Ps-free graph is Ps-
free, by Proposition 2 it is possible to construct the desired dominating
set U in the beginning of the procedure. If |[U| > k > 3 then U is
a clique in G and ch(G) > ch(G[U]) > k. If d(GIW U U]) > d
then ch(G) > ch(G[W U U]) > k by Proposition 1. Otherwise we
proceed and consider color lists for vertices of U. It should be observed
here that it is sufficient to consider only color lists with elements from the
set LU{l+ 1,...,1 + kp}, since we have to take into account only
intersections of these lists which each other and with lists for vertices of
W.If U = V(H) then the output is created by checking all possible list
colorings of H. If U # V(H) then we proceed with our decomposition
of G. Graphs Fy, ..., F, are constructed and Procedure Color is called
recursively for them. It is possible to consider these graphs independently
since vertices of different graphs H; and H; are not adjacent. Then outputs
for Fy,..., F, are combined and the output for G is created by checking
all possible list colorings of U.

Now we analyze the running time of this algorithm. To estimate the
depth of the recursion tree we assume that h sets U are created recursively
without halting and denote them by Uj,...,U. Since |U;| < k,
|Uy U -+« U Uy| < kh. Notice that each set U; is a dominating set for

Uit1y...,Up. Hence Y. degp(v) > h—1, where F = G[U;U- - -UUy],
veU;

and Y. deg(v) > h(h—1). This means that d(F') > %, and if b >
vEV (F)
kd +1 = 4k (k:) log(Z(k,:)) + 1 then Procedure Color stops. Therefore

the depth of the recursion tree is at most kd 4+ 1 = 4k (k,:) log(Z(k,:)) + 1.
It can be easily noted that the number of leaves in the recursion tree
is at most n = |V(G)|, and the number of calls of Color is at most

(4k (k;:) log(2 (k,:)) +1)n = O(K® - 2¥" - n). Let us analyze the number of
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operations used for each call of this procedure. The set U can be constructed
in polynomial time by the results of [2]|. If |[U| > k then the algorithm
finishes its work. Assume that |U| < k. Since the depth of the recursion
tree is at most kd + 1, color lists for vertices of U are chosen from the
set {1,..., (kd+ 1)k?}, and the number of all such sets is ((kd"l;l)k2). So,

there are at most ((kd"’,’:)k2)k (or 20(k8'2k4)) possibilities to assign color lists
to vertices of U. The number of all list colorings of vertices of U is at most
k*. Recall that the output of Color is either "NO” or a list of different sets
X = (Xy1,...,X,) where X; € X Since the depth of the recursion tree is
at most kd+1 and each set U contains at most k elements (if the algorithm
does not stop), the size of W is at most k(kd + 1). Hence the output
contains at most 2%(*kd+1) (or 20(k6'2k4)) sets. Using these bounds and the
observation that ¢ < m, we can conclude that the number of operations for
each call of Color is 20(-*2%") . e for some positive constant e¢. Taking into
account the total number of calls of the procedure we can bound the the

. . . 8 ok? .
running time of our algorithm as 20(k%:2%7) . s for some positive constant
s. Il

3.2. (J, k)-CHOOSABILITY is FPT on Ps-free graphs

Our result can be generalized for the case when sizes of lists of colors
are defined by some function. Let G be a graph and f: V(G) — N be a
mapping which assigns positive integers to vertices of G. It is said (see [7])
that G is f-choosable for a function f if G has a list coloring for every
assignment of color lists L(v) with |L(v)| = f(v) for all v € V. The
(7, k)-CHOOSABILITY problem asks for a given graph G, positive integers
j and k (7 < k), and a function f: V(G) — {j,...,k}, whether G is
f-choosable for f.

Using exactly same arguments as in Section 3.1, it is possible to prove
the following claim.

THEOREM 2. The (j, k)-CHOOSABILITY problem is FPT on Ps-free
graphs when parameterized by k.

3.3. k-CHOOSABILITY for cographs

For the special case of cographs, it is possible to improve our algorithm.
Here we sketch the ideas which can be used in this case.

Recall that if G; and G5 are two disjoint graphs, then the disjoint union
of G1 and G2 is the graph with the vertex set V(G1) U V(G2) and the
edge set E(G1) U E(G2). The join of Gy and G5 is the graph with the
vertex set V(G1) UV (G3) and the edge set E(G;)U E(G2) U{uv: u €
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V(G1),v € V(G2)}. It is well known (see e.g. [3]) that any cographs can
be constructed from isolated vertices by means of these operations, and such
decomposition of any cograph can be constructed in linear time [5].

We also need following properties of the choice number of complete
bipartite graphs:

Proposition 3 ([7]). e ch(K, ) > r;

o forr > (*71), ch(K,,) > k.

Suppose that G is a connected cograph with at least k vertices. Then G
is a join of two cographs Gy and Ga. Let nqy = |V(G1)|, na = |V(G2)]

and assume that n; < ng. If ny > (Zkk_l) then ch(G) > k by

Proposition 3. Suppose that & < n; < (2’“,6_1). If no, > Kk then
ch(G) > k by Proposition 3. Otherwise the number of vertices of G is
at most (Zkk_l) + k¥ — 2 and it is possible to check whether ch(G) < k by
the brute force algorithm. It remains to consider the case n; < k. Notice
that V(G1) is a dominating set in G and we can apply same arguments
as in Section 3.1. Now we consider recursively components of G. It can be
assumed that the depth of our recursion is at most k. since otherwise G

contains K11 as a subgraph and hence ch(G) > k.

4. CHOOSABILITY is NP-hard on Ps-free graphs
In this section we show that CHOOSABILITY, with input G and k,
remains NP-hard when the input graph is restricted to Ps-free graphs.

THEOREM 3. The CHOOSABILITY problem is NP-hard on Ps-free
graphs.

Proof. We reduce the not-all-equal 3-Satisfiability (NAE 3-SAT) problem
with only positive literals [9] to CHOOSABILITY. For a given set of Boolean
variables X = {x1,...,2,}, and a set C = {C4y,...,Cp} of three-
literal clauses over X in which all literals are positive, this problem asks
whether there is a truth assignment for X such that each clause contains
at least one true literal and at least one false literal. NAE 3-SAT is NP-
complete [9].

Our reduction has two stages. First we reduce NAE 3-SAT to LiST
COLORING by constructing a graph with color lists for its vertices. Then
we build on this graph to complete the reduction from NAE 3-SAT to
CHOOSABILITY.

At the first stage of the reduction we construct a complete bipartite
graph (Kp, 2m) H with the vertex set {&1,...,x,}U {Cfl), e, COYU
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{c?®,..., C?}, where {z1,...,z,} and {cW,..., CcH1u)
{c®,.. ., CD}) is the bipartition of the vertex set. Hence on the
one side of bipartition we have a vertex for each variable, and on the
other side we have two vertices for each clause. We define color lists for
vertices of H as follows: L(x;) = {2¢ — 1,2¢} for 72 € {1,...,n},
L(CV) = {2p — 1,2q — 1,2r — 1} and L(C\?) = {2p, 2¢, 2r} if the
clause Cj contains literals @, &4, , for j € {1,...,m}. Construction of
H is shown in Figure 1.

{2p-1,2p} %, X {2g-1,24}
® @ ® @
X {2r-1,2v}
@ @ & @

{2p-1,2g9-1, 2r -1} C;n C}g) {2p 24, 2¢}
|

Puc. 1: Graph H.

Lemma 1. The graph H has a list coloring if and only if there is a truth
assignment for the variables in X such that each clause contains at least
one true literal and at least one false literal.

Proof. Assume that H has a list coloring. Set the value of variable x; =
true if vertex x; is colored by 2¢ — 1, and set x; = false otherwise. For
each clause C} with literals @, x4, T,, at least one literal has value true
since at least one color from the list {2p, 2q, 27} is used for coloring vertex

CJ@), and at least one literal has value false, since at least one color from

the list {2p — 1,29 — 1,2r — 1} is used for coloring vertex C](l).
Suppose now that there is a truth assignment for the variables in X
such that each clause contains at least one true literal and at least one
false literal. For each variable x;, we color vertex x; by the color 22 — 1
if &; = true, and we color x; by the color 2¢ otherwise. Then any two
vertices C}l) and CJ@), which correspond to the clause C; with literals
ZTpy Tq, T,, can be properly colored, since at least one color from each of
lists {2p — 1,2q — 1,2r — 1} and {2p, 2q, 27} is not used for coloring of
VErtices Ty« .y Lyy. U
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Now we proceed with our reduction and add to H a clique with k =
n + 4nm — 4m vertices u1,...,Ug. For each vertex x;, we add edges
aiug for € € {1,...,k}, £ # 26 — 1, 2i. For vertices C{") and C,> which
correspond to clause C; with literals x,, x4, ©,, edges C;l)ug such that

L #2p—1,2qg — 1,2r — 1 and edges C;z)’U/g such that £ # 2p, 2q, 2r
are added for £ € {1,...,k}. We denote the obtained graph by G.

We claim that G is k-choosable if and only if there is a truth assignment
for the variables in X such that each clause contains at least one true literal
and at least one false literal.

For the first direction of the proof of this claim, suppose that for any
truth assignment there is a clause all of whose literals have the same value.
Then we consider a list coloring for G with same color list {1,...,k} for
each vertex. Assume without loss of a generality that w; is colored by color
i for i € {1,...,k}. Then each vertex x; can be colored only by colors

21 — 1, 24, each vertex C;l) can be colored only by colors 2p — 1,2q —
1,27 — 1 and each vertex C;z) can be colored only by colors 2p, 2q, 27 if

C’;l), C]@) correspond to the clause with literals x,, 4, €. By Lemma 1, it
is impossible to extend the coloring of vertices w1, ..., ug to a list coloring
of G.

For the other direction, assume now that there is a truth assignment for
the variables in X such that each clause contains at least one true literal
and at least one false literal. Assign arbitrarily a color list L(v) of size k
to each vertex v € V(G). We show how to construct a list coloring of
G. Denote by U the set of vertices {uant15.+.,ur}. Notice that U is a
clique whose vertices are adjacent to all vertices of G. We start coloring
the vertices of U and reducing G according to this coloring, using following
rules:

1. If there is a non colored vertex v € U such that L(v) contains a color
¢ which was not used for coloring the vertices of U and there is a vertex
w € {xy,..., wn}U{C’l(l), ceey Cg)}U{C’{z), ..y C@Y such that
c ¢ L(w), then color v by e. Otherwise choose a non colored vertex
v € U arbitrarily and color it by the first available color.

2. If, after coloring some vertex in U, there is a vertex x; such that at
least 2m — 1 colors that are not included in L(a;) are used for coloring
U, then delete x;.

3. If, after coloring some vertex in U, there is a vertex C](S) with s €
{1, 2} such that at least m — 2 colors that are not included in L(C;s))
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are used for coloring U, then delete C’;s).

This coloring of U can be constructed due the property that for each
v € U, |L(v)] = k and |U| = k — 2n < k. Rule 2 is correct since
dego(x;) = k + 2m — 2, and therefore if at least 2m — 1 colors that
are not included in L(x;) are used for coloring U, then any extension of
the coloring of U to the coloring of G — x; can be further extended to the
coloring of G, since there is at least one color in L(x;) which is not used
for the coloring of neighborhood of this vertex. By same arguments, we can
show the correctness of Rule 3 using the fact that degG(C;s)) =k+n—3.

If after coloring the vertices of U, all vertices of {®y,...,x,} U
{cH,..., cHiu {c?®,..., C @1} are deleted then we color remaining
vertices Uy, ..., Ua, greedily, and then we can claim that a list coloring of
G exists by the correctness of Rules 2 and 3. Assume that at least one vertex
of {&1,...,z,yU{CW, ..., cHiu {c?®,..., C@} was not deleted,
and denote the set of such remaining vertices by W. Let v € U be the last
colored vertex of U. Since |U| = k — 2n = n + 4nm — 4m — 2n =
n(2m — 1) 4+ 2m(n — 2), the color list L(v) contains at least 2n colors
which are not used for coloring the vertices of U. Furthermore, for each
w € W, all these 2n colors are included in L(w), due to the way we
colored the vertices of U and since w was not deleted by Rules 2 or 3.
We denote these unused colors by 1,...,2n and let L = {1,...,2n}.
We proceed with coloring of G' by coloring the vertices %qiy..., U2, by
the greedy algorithm using the first available color. Assume without loss of
generality that if some vertex w; is colored by the color from L then it is
colored by the color z. Now it remains to color the vertices of W. Notice
that G[W] is an induced subgraph of H. For each w € W, denote by
L' (w) the colors from L(w) which are not used for coloring vertices from
the set {uy,...,us} that are adjacent to w. It can be easily seen that for

any x; € W, 21 — 1,2i € L'(x,), for any C}l) € W which corresponds
to clause with literals &p, €4, ,, 2p — 1,2¢ — 1,2r — 1 € L’(C}l)), and
for any CJ@ € W which corresponds to clause with literals x,, x4, T,
2p, 2q,2r € L’(CJQ)). Since there is a truth assignment for variables X
such that each clause contains at least one true literal and at least one false
literal, by Lemma 1 we can color the vertices of W.

To conclude the proof of the theorem, it remains to prove that G is
Ps-free. Suppose that P is an induced path in G. Since H is a complete
bipartite graph, P can contain at most 3 vertices of H and if it contains
3 vertices then these vertices have to be consecutive in P (notice that if P
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contains vertices only from one set of the bipartition of H, then the number
of such vertices is at most 2 since they have to be joined by subpaths
of P which go through vertices from the clique {uy,...,ug}). Also P
can contain at most 2 vertices from the clique {wy,...,ur}, and if it
has 2 vertices then they are consecutive. Hence, P has at most 5 vertices,
and if P has 5 vertices then either P = utlumC](fl)miC]gsz) or P =

s 8 8 . .
utlthmilCJ( )mi2. Assume that P = utlumC](ll)miC’;;). Since P is an
induced path, vertices uy, , us, are not adjacent to x;. By the construction of

G, it means that {t;,t2} = {2¢—1,2¢}. But then ng) is adjacent either
Uy, OT Ug,. Suppose that P = wuy, U, 4, C’;B)mi;,. Again by the construction

of G, {t1,t2} = {212 — 1,245} and C;s) is adjacent to ug, or ug,. By
these contradictions, P has at most 4 vertices. O

5. Conclusion and open problems

We proved that the k-CHOOSABILITY problem is FPT for Ps-free
graphs when parameterized by k. It can be noted that our algorithm
described in the proof of Theorem 1 does not explicitly use the absence
of induced paths Ps. It is based on the property that any induced subgraph
of a k-choosable Ps-free graph has a dominating set of bounded (by some
function of k) size. It would be interesting to construct a more efficient
algorithm for k-CHOOSABILITY which actively exploits the fact that the
input graph has no induced Ps.

Another interesting question is whether it is possible to extend our result
for P,-free graphs for some » > 67 Particularly, it is known [22] that any
Pg-free graph contains either a dominating biclique or a dominating induced
cycle Cg. Is it possible to prove that k-CHOOSABILITY is FPT for Pg-free
graphs using this fact?

Also, we proved that k-CHOOSABILITY is NP-hard for Ps-free graphs.
Is this problem IT¥-complete?

Finally, is it possible to improve our algorithm for cographs which is
double exponential in k7
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