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THE GROWTH OF [’-NORMS IN PRESENCE
OF LOGARITHMIC SOBOLEV INEQUALITIES' ?

Sergey G. Bobkov

The growth of LP-norms is considered under various hypotheses,
including LS, (logarithmic Sobolev) inequalities.

1. The graph setting

Let G = (V,€) be a connected, non-oriented, finite graph. It will
be equipped with the uniform probability measure pu, assigning the mass
1/card(V') to each point of V| where card(V') is the number of vertices.

If (z,y) € &, we will say that the points x and y are neighbours and
write y ~ x. With any real-valued function f on V, associate the modulus
of the gradient |V f| > 0, defined on V' by

Vi@ = 1f @)~ fp)F

y~a

Various relations between the distributions of f and |V f| under the
measure u are the subject of the theory of Sobolev inequalities on finite
graphs, which may be included as part in the framework of finite Markov
chains, cf. e.g. [SC|, [L2|, |B-T|, |G-M-T|, [M-T|. Of the most interest are
Poincaré-type and logarithmic Sobolev inequalities

A Var(f) < / V2 dp (1.1)

pEnt() <2 [ 197P dp. (1.2)
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which are supposed to hold for all f : V' — R. Here, Var(f) = [ f?dp —
([ f dp)?* stands for the variance of f, and

Eu(12) = [ log f2du— [ fdptog [ 12 d

for the entropy of f? under p. An optimal constant \; > 0 is called the
spectral gap, while an optimal value p > 0 is referred to as the logarithmic
Sobolev constant of GG. It is well-known that p < \{, which immediately
follows from the relation

lim Ent ((f + C)*) = 2 Var(f).
C—o0
One of the interesting problems is how to relate the LP-norms || f||, =
([ |f|Pdu)/? of the functions on V to the LP-norms of their moduli of the

gradients
1/p
Vsl = [19san)

Usually, one considers a more specific problem about the probability

M{|f_Ef|2T} T>0:

of large deviations of f from the mean Ef = [ fdu in the class of Lipschitz
functions. See e.g. [A-M], [L1-2|, and references therein. A closely related
question is the one about the rate of the growth of LP-norms ([R2]). Note
that in the graph setting the Lipschitz property may be understood in many
senses. As a natural choice, the value || f||ri, = max,ey |V f(x)] is called the
Lipschitz constant of f, and one says that f is Lipschitz, if || f||Lip, < 1.

However, often the Lipschitz constant does not reflect many properties
of the distributions of functions, and it is desirable to have more sensitive
bounds for large deviations. For example, in presence of the logarithmic
Sobolev inequality (1.2), one always has

/ef dp < /€|Vf|2/f’ du (1.3)

for any f on V with pg-mean zero ([B-GJ). This can also be formulated
in terms of the Orlicz norms || - ||y, generated by the Young functions
Va(t) = e — 1 with a = 1 and a = 2. Let us recall that

Il =int {e> 05 [vatr/nde <1},
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Put also |V fly. = || IVf] ||4.- Then, by the very definition, (1.3) yields the

relation

, < V g, 1.4
| fllpy < \/’H flly (1.4)

It would be interesting to study whether the converse implication is true,
as well. One may also wonder how to refine the inequality (1.4) in terms of
LP-norms. Indeed, as is known and easy to see (see Appendix), up to some
absolute constants ¢y, co > 0,

f f
ol s <o oup Ll s
p>1 P p>1 P
while il v
evsup LLe <, < ¢, gup LLe (1.6)
p>1 p

Hence, as (1.4) suggests, one may expect that HfH,, may be bounded by
|V fl|, with factors growing like \/p. For the first time, an observation of this
kind was apparently made in the 1994 work by S. Aida and D. Stroock [A-S]
for an abstract scheme of Markov transition kernels. They also considered
defective logarithmic Sobolev inequalities

pEnt(f2) < 2(Ef, f) + 8 / VIR dp.

where (Ef, f) is a given Dirichlet form, and where an additional term
B [ |V fI?du is referred to as defect.

The aim of this note is to adapt the approach of [A-S| to the graph
setting as above and to the setting of abstract metric spaces with local
moduli of the gradients. We will also see that more general hypotheses
in comparison with (1.2), such as, the so-called LS,-inequalities may be
involved in a similar analysis.

2. The growth of LP-norms on finite graphs

Keeping the same notations as in Section 1, the following theorem holds.

Theorem 2.1. For any function f on V and any p > 2,

2 2 _ 2 P 2
115~ 1915 <2 / IV 7|2 dt. (2.1)

where p is the logarithmic Sobolev constant. In particular,

LAIZ 1712 < (pp 2 sz (2.2)
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Essentially, this statement is a variation of Theorem 3.4 in [A-S| (in the
case where there is no defect).

Note that, dividing the inequality (2.2) by p — 2 and letting p — 2, one
arrives at the logarithmic Sobolev inequality (1.2) with an additional factor
2 on the right-hand side. In this sense, (2.2) and (1.2) are almost equivalent.

Under an additional mean assumption Ef = 0, the term ||f|> in (2.2)
may further be estimated by using the Poincaré-type inequality (1.1). More
precisely, it gives

1 1
A1 < IV A5 < =~ IV £15.
A1 p
Hence, we also have:

Corollary 2.2. For any function f on V with p-mean zero,

2p—3

1Al < IV Flp- (2:3)

Let us remind the argument of [A-S]|, which goes back to the seminal
work of L. Gross [G]. It is based on the general formula

d 1 _
b 11l = ];Hf\l,l, PEnt(|f["), p>0, (2.4)

holding for any measurable function f on an arbitrary probability space.
such that 0 < || f||,+ < +oo, for some € > 0. In the graph setting the latter
just means that f is not identically zero. Therefore, for all p > 0,

IAE = 2171 Ene( 1) 29

Let p > 2 and ||f||, > 0. According to the hypothesis (1.2), applied to
the function |f[P/2, we may write

pEnt(|f]") < 2 / VPP dp, (2.6)

Here the right-hand side is

/ S (@2 — F)P?) due) -
ZZ F@ P2 = [ F P Lyswis i

T oy~

card
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Since a” — 0" < ra"'(a —b), for all a > b > 0 and r > 1, the expression
inside the double sum is estimated by

T UI@ = @D @P* Lywpsiwn < G @) = F@) 1F@)P>

Thus,

2 [IVUPFPan < s S B (@)~ ) @)

r Yy~

- pé/ V(@)1 (@) P2 du(z),

and by (2.6)

Ent(fP) < & / V21172 dp
p

The last integral may further be bounded by virtue of Holder’s inequality

with the exponents £ and (£)* = -E5, and we get

2
Ent(|f?) < % IV 11211 £][2-2.

Hence from (2.5) we obtain a differential inequality % 117 < 2V £,
which can easily be integrated to yield (2.1).

3. LS,-inequalities

In the literature one can find a variety of more general or modified forms
of the logarithmic Sobolev inequality (1.2), which have been introduced
and analysed for different aims; cf. e.g. [L2-3], |[B-T|. Here we consider one
natural generalization, which in the graph setting as above takes the form

Ent(11) < € [ 197()ly duta), (3.1)

where 1 < ¢ < 2is a fixed parameter, C, is a positive constant (independent
of the function f on V'), and where

1/q
Vi)l = (Z Fa) f(y)|‘1) Crev (3.2

Yy~

Definition. The inequality (3.1) will be called a logarithmic Sobolev
inequality with the power parameter ¢, or for short, an LS,-inequality (with
constant C,).
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Under the same name a similar family of analytic inequalities for local
gradients was treated in |B-Z| to study super-Gaussian tails for distributions
of Lipschitz functions. As it turns out, (3.1) may also be used to obtain
improved rates for the growth of LP-norms in comparison with the particular
case ¢ = 2 of Theorem 2.1.

Indeed, given p > ¢, and starting with the identity (2.4), we get

d qa — q qa-p p
A = I Ene(l ). (5.3

where one should assume that |[f]|, > 0. On the other hand, by (3.1),
applied to the function |f[P/9, we have

Eue(sP) < 3 [ 19I7Pe

- / S (F@P = 1F )P du()

Yy~x
207

q
= ZZ [F@) P =1 F )P g1

card(V
T y~x

The expression inside the double sum can be bounded by

q q
(g) (LF @=L F@P Ll < (g) @) —F )| f )P,
Hence,
2C
Buclslr) < (L) IEENIIETS
2 q
= 2 195l )l dute),
By Holder’s inequality with the exponents f]—’ and (%)* = ﬁ, the above

integral is estimated by

V() du(a F@Pd@) = 119l 1
(/ )" (/ )

and we get
21 1
Ent(|f]7) < ¢

IV Ao 115 1115
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Combining this with (3.3), we obtain a differential inequality
Sl < 20 B 19l (3.4)
dp - ¢

If ¢ > 1, integrate (3.4) between ¢ and p with respect to the variable p,
and then we arrive at

202 p 209 pi—1 — ga-!
R e R e A [\
q

Thus, we have obtained the following:

Theorem 3.1. Whenever p > q > 1, under an LS,-inequality with
constant C,, we have, for any function f on 'V,

Pyq—-1 _
q

A1 = WA1E < 267 IV £la 115 (3:5)

—1

4. LSi-inequality and isoperimetry
The limit case ¢ = 1 in Theorem 3.1 is special, since then (3.4) turns
into the differential inequality

201

d
e A

Clearly, it yields
P1
110~ 1l < 20 [ 11951l e < 261 togp | 911
q

which may also be obtained by letting ¢ — 1 in (3.5).
Hence, if an LS;-inequality is satisfied for the graph G = (V, &) with
constant C', that is, if for any function f on V,

Eut(() < €1 [ Y 1£0) -~ 7wl duta). (4.1

y~a

then, for any p > 1, we have

171~ 51 < 20,10z (| (Zlf(:v)—f(yﬂ)pdu(rr)>1/p- (12)

Yy~
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Thus, while in case ¢ > 1 the coeffcient in front of |||V f],|l, grows
polynomially fast as in Theorem 3.1, it grows logarithmically in case ¢ = 1.

Now, it might be useful to realize that the hypothesis (4.1) has a simple
geometric description of an isoperimetric nature. The main feature of this
inequality is that it holds for all f, if and only if it holds in the class of the
indicator functions f =14, A C V.

To see this, first note that, by homogeneity and due to the triangle
inequality ||a| — |b]| < |a—1b| (a,b € R), without loss of generality one may
restrict (4.1) to the functions with values 0 < f < 1. Let us assume this.
Introduce a measure Q on V x V', assigning the mass 1/card(V) to each
couple (z,y) of neighbours in V. Put A; = {x € V : f(z) > t}, so that

f(a) = / 1y, () di (4.3)

and

/Z|f y)| du(z —2/QAt><At)d

Y~z

where A; denotes the complement of A; in V. Then, (4.1) takes the form

Ent(f) < 2C, /1 Q(A, x A)dt. (4.4)

But the entropy f — Ent(f) is a convex functional, so, by (4.3),

Ent(f) < / Bt (1) dr.

Hence, (4.4) would follow from
Ent(1y,) <2C,Q(A; x A;), 0<t<1.
It remains to note that the inequality of the form
Ent(14) <20, Q(A x A) (4.5)

is exactly (4.1) for f =14.
Now, with every set A in V we associate the edge boundary function

ha(z) = the number of neighbours of x outside A, x € A,

putting ha(z) = 0, if ¢ A. Then clearly Q(A x A) = [ hadp.
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In addition, Ent(14) = u(A)log
(4.5), we arrive at:

ﬁ. Replacing C' = 2C in (4.2) and

Theorem 4.1. Assume that, for any set A C V,

1(A)log

e / ha(z) dp(z) (4.6)

with some constant C'. Then, for any function f onV, and any p > 1,

151~ 51k < Croep ([ (S - 501} du(zw)w.

y~ax

The inequality (4.6) is of an isoperimetric type: the integral on the right-
hand side represents the size of the edge boundary of A.

5. Connection between LS, and Poincaré-type inequalities

In order to judge about the rate of the growth of the functions f on
V with mean Ef = [ fdu = 0 in Theorem 3.1, so that to obtain a
corresponding analogue of Corollary 2.2, we need to relate LS,-inequalities

Eut((1) < €3 [ Y 1f@) - Fw" duo) (5.1
Yy~
to the inequalities of Poincaré-type
I£ = Eflly < 43 [ Y 1f@) - F@l" duto) (5.2)
Y~T

Here we assume that C, and A, are some positive constants independent of
f

Note that (5.2) makes sense for any ¢ > 1, while (5.1) requires that
g < 2. Indeed, otherwise, if f is not identically zero, Ent(|f + C|?) — +oo,
as C' — +oo, while the right-hand side of (5.1) does not change. So, (5.1)
may not hold for ¢ > 2.

As was already mentioned, in the basic case ¢ = 2, (5.1) easily implies
(5.2) with A2 = 1 C2, by applying the logarithmic Sobolev inequality to the
functions of the form f+C with growing C'. This argument is no longer valid
in case 1 < ¢ < 2, since then Ent(|f + C|?7) — 0, as C — +o00. Therefore,
we need to choose a different route.
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Lemma 5.1. For any function f >0 on V,

Ent(f) > —logu{f > 0} Ef. (5.3)

This observation is elementary, and we refer to |[B-Z|, Lemma 2.2.
Now, to derive (5.2) from (5.1), take an arbitrary function f on V with

p-median at zero, that is, such that u{f > 0} < 1 and p{f < 0} < 1.

Apply (5.3) to the functions (f+)¢ and (f7)9, where
T =max{f,0}, [~ =max{-f,0}.
Then we get
Ent((f")?) > log2E(f")%,  Ent((f7)") > log2E(f7)",

and after summing
E|f]" < % (Ent((F)7) + Ent((£7)1)). (5.4)

On the other hand, |f*(z) — fT(y)| < |f(z) — f(y)|, and similarly for f~.
Hence, combining (5.1) with (5.4), we obtain that

Bl <t / S 1) — S dua). (5.5

Finally, || f —Eflly < [|flle + E|f] < 2[[fllg: s0o E|f — Ef|* < 27E|[f|, and
by (5.5),

2144 (8

E|f-Ef|" <

/ SOUF@) — f@) du(@). (5.6)

y~a

The both sides of this inequality are invariant under adding any constant to
f, so the assumption about the median of f may be removed at this step.
Hence, (5.6) provides a Poincaré-type inequality such as (5.2).

Theorem 5.2. Under the LS,-inequality (5.1) with constant C,, the
Poincaré-type inequality (5.2) holds true with
1
21+ O

Al = .
d log 2
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We can now return to Theorem 3.1. Under the mean assumption Ef = 0,
using Theorem 5.2, we get that

(B -
1715 < AU+ 208 =g 11V 7l I

NN At P
(i + e ) Ca 19

To simplify the constant, assume p > 2. Clearly, (%)‘1_l < p?~! and

-1 _1 249
rg - >logp >log2>c

qg—1 log 2

_ 2 —1
with ¢ = logT2. Hence, [|f[|¢ < 2(1 + %) ’%Cg 11V flqg 14

Up to an absolute factor, this is a generalized form of Corollary 2.2.

Corollary 5.3. Under the LS,-inequality (5.1) with constant C, (1 <
q < 2), for any function f on V with u-mean zero, and any p > 2,

pil 1 1/q
111, < 2062 20) 19

6. Continuous setting

The above statements remain to hold for local gradients. To describe
a general scheme, let (V,d) be a metric space, equipped with a Borel
probability measure u. Given a function f on V., define the generalized
modulus of the gradient

Df ()] = limsup L& =Wl

, €V, 6.1
d(zy)—0t d(ZL‘, y) ( )

putting |Df(z)| = 0, if = is an isolated point in V.

If f is continuous, then |D f| is Borel measurable (cf. [B-H]).

A function f is called locally Lipschitz, if for any point 2 € V, there
is 7> 0 and C = C(z,r), such that, |f(z) — f(y)| < Cd(z,y), whenever
d(xz,y) < r (that is, f has a finite Lipschitz constant on some neighborhood
of x). For such functions, |Df| are finite and Borel measurable.

For example, if V' is the Euclidean space R" with Euclidean metric, any
locally Lipschitz function f on V is differentiable almost everywhere (with
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respect to Lebesgue measure), and (6.1) leads to

0f (x)

8xi

n

D) =)

=1

2

at every point z, at which f is differentiable.

Returning to the abstract metric probability space, we say that (V,d, u)
satisfies an LS,-inequality with constant C,, where 1 < ¢ < 2, if for any
bounded locally Lipschitz function f on V/,

Ent(|f|7) < €7 / D ()" ds(x). (6.2)

The requirement that f is bounded may easily be removed from the
definition.

In the sequel, for short, we write ||[Df||, = ([ |Df[? d,u)l/p.

The corresponding analogue of Theorem 3.1 is the following.

Theorem 6.1. Whenever p > q > 1, under an LS,-inequality with
constant Cy, for any locally Lipschitz function f on V with finite || f||,,

(Brt-1
1713 =111l < €4~ —— DSl (63

The proof is similar to the proof of Theorem 3.1 and is even simpler
due to the property |Du(f)| < |u/(f)] - |D(f)|, where u is an arbitrary
differentiable function on the real line. (As a result, the factor 2 in (3.5) can
be removed).

In the limit case ¢ = 1, the LS;-inequality (6.2) is equivalent to the
isoperimetric-type inequality

p(A) log < Cip'(A) (6.4)

1
1(A)
in the class of all Borel subsets A of V', where

A") — u(A
4 (A) = lim inf A7) — u(4)
r—0+ r
is the outer Minkowski content of A with respect to the measure p (A"
is the open r-neighbourhood of A for the metric d). For the entropy and

related functionals, this equivalence was studied by many authors, starting
with the works by V.G. Maz’ya in the early 1960s, cf. [M], [R1], [B-H].
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As a result, we obtain:

Theorem 6.2. In presence of the isoperimetric inequality (6.4), for any
p > 1 and for any locally Lipschitz function f on V with finite || f||,,

11l = [Iflli < Cilogp [[Df|l.

Example. As shown in [B2|, any log-concave probability measure
1, supported on a Euclidean ball in R™ of radius » > 0, satisfies the
isoperimetric inequality

21 it (4) > p(A) log —— + (1 — p(4)) log

1(A) 1—p(A)

Hence, (6.4) is fulfilled with C; = 27, so, by Theorem 6.2,

Hf“p —|Ifllh < 2rlogp ||Df||p-, p> 1.

In particular, this holds for any convex body K in R”", contained in a
Euclidean ball of radius r» > 0, with respect to the normalized Lebesgue
measure.

Let us return to Theorem 6.1. As shown in [B-Z], an LS,-inequality (6.2)
implies a Poincaré-type inequality
401
¢ < —4Df|e 6.5
1115 < % IDS1 (6.5

in the class of all locally Lipschitz functions f on V with y-mean Ef = 0.
Combining it with (6.3), we get, for any p > ¢,

PYg—1 _
e < (= T oo
— \log?2 qg—1 q 7

One can simplify the constant like in the proof of Corollary 5.3 and derive:

Corollary 6.3. Under the LS,-inequality (6.2) with constant C, (1 <
q < 2), for any locally Lipschitz function f on V with p-mean zero, and any
p=>2,

pq—l -1 1/q
111, < w6,(Z2) s, (6.6)
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Examples. A probability measure p on R with density d’;—f:) =

¢ exp{—cq|z|*} satisfies an LS,-inequality (6.2) with finite constant, if and
only if a > £ (1 < ¢ <2).

More generally, one may consider densities of the form e~V(®), where the

function U € C?(R) is supposed to increase near +oo, to decrease near
—o0, and to satisfy U"(x) = o(U'(z)?), as |z| — +oo. Then (cf. [B-Z]), p
satisfies (6.2) with a finite C, (1 < ¢ < 2), if and only if

Ulz) +log |U'(z)|

lim sup < +00.
|| =00 U ()]

In the classical case ¢ = 2, replacing C3 = 2/p, the LS,-inequality (6.2)
takes the form

pEnt(f?) < 2_/ IDf(2)]? dpu(z), (6.7)

while the conclusion (6.3) of Theorem 6.1 reads as
p—2
1l = 115 < e DA p>2 (6.8)

It is slightly better then the bound of Theorem 2.1 about the graph setting.
Moreover, (6.7) may be obtained from (6.8) by letting p — 2, so these
inequalities are equivalent.

As was already mentioned, (6.8) implies a Poincaré-type inequality
pllfl3 < |IDf||3 (given that Ef = 0), which is a little better than what
follows from the bound (6.5) in case ¢ = 2. Hence, one can also improve the
constant in Corollary 6.4. Namely, we get

£ =Efly < 2100 0> (6.9)

For example, the standard Gaussian measure 1 on R" satisfies (6.7) with
p =1 (|G]), so, by (6.9), for any p-integrable locally Lipschitz function f
on R",
If =Efll, < vp=1IDfll,, p>2

This inequality (with asymptotically equivalent constants) is well-known
and can be obtained by different arguments (cf. e.g. [P]).

Remark 6.4. It is shown in |B-Z|, ¢f. Theorem 6.1, that in presence of
the the LS,-inequality (6.2), for any locally Lipschitz function f on V with
p-mean zero,

[ aute) < [ 01 duiz), (610
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where B = ¢*¢"?C{ and ¢* = _L is conjugate to ¢ € (1,2]. This is a

more general form of (1.3), which corresponds to the classical case ¢ = 2 in
(6.10).

If the Orlicz norm ||Df||y, < 1, the second integral in (6.10) does not
exceed 2, so

Hence, [ el/l/Ba)dy < 2, or, equivalently, || f|ly, < 2B,. Using B, < (q —
1)~Y/4C,, we may conclude that

20,

11l < (G— 1)/ 1D flleg, (6.11)
for any f on V with p-mean zero (which is a corresponding generalization
of (1.4), up to a universal factor).

However, the dependence of the constant in (6.11) on ¢, when it is close
to 1, is asymptotically incorrect. A sharper inequality can be derived from
Corollary (6.3), by using an LP-description of the the Orlicz norm given in
Proposition 8.1 below.

Indeed, assuming that ||Df||,, < 1 and applying a lower bound in (8.1)
with a = ¢, we get that || f]|, < 2p'/4, for all p > 1. Hence, by (6.6), for all

D> 2,
1/q
p!—p
111, < 20¢,(2=2)

An optimal constant in (p? — p)'/4 < Ap for the range p > 2 is attained for
p=2,50 A= (1-2"9Y9 and

1_21—q 1/q
1l < 200q<q_—1> p < (20log2) Cyp.

For the range 1 < p < 2, one may just use ||f||, < ||fll2 < (40log2) C,p.
Now, applying a lower bound in (8.1) with a = 1, we get that || f||,, <
(80elog?2) C,.
This may be summarized in the following.

Corollary 6.5. Under the LS, -inequality (6.2) with constant Cy, for any
locally Lipschitz function f on V with p-mean zero,

[ £l <160 Cq [|Df |- (6.12)



The growth of I[P-norms in presence of logarithmic sobolev inequalities 107

7. Discrete cube

As an example of a graph, consider the discrete cube V. = {0,1}"
with the uniform probability measure p, assigning the mass 27" to each
point. Each point # = (x1,...,2,) in V has exactly n-neighbours s;(z),
1=1,...,n, with coordinates

(si(x)), = 2; (j #1), (si(x)), =1~z

Hence, any function f on V has the associated modulus of the discrete
gradient, given by

IV f(x Z |f(x i(@)[*.

According to the Bonami-Gross theorem [Bon|, |G|, in this case Ay = p = 4,
that is, for any f on the discrete cube, we have

Ent(f?) < /|Vf|2d,u (7.1)

Therefore, applying Theorem 2.1 and Corollary 2.2, we obtain the following:

Corollary 7.1. For any function f:{0,1}" — R, and any p > 2,

-2
1A= A1 < B= IV 11, (7.2)

In particular, if f has p-mean zero,

3
£l < IV £lp- (7.3)

It is interesting that a similar statement continues to hold for the usual
modulus of the gradient |Df| like in the previous section within a more
narrow class of functions. Namely, assume f is defined and non-negative
on the cube [0, 1]", is smooth and coordinatewise convex (that is, convex
with respect to each coordinate). Then, whenever f(z) > f(s;(x)), we have

f(z) = f(si(x)) < %g). Hence, for any p > 2,

(f(2) = Flsi(@)) Fla)7 2/

) fayo-o

Fa)P? = f(si(@)P? <

<

NI oIS
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and so,
2
E|Vf(@@)?) = ZZ 2P = F)?)" s rwn
T Yy~
o/ (@)
< (I’ 2) | I\

2

- %Ef(x)’” Df ()P

Therefore, by (7.1) and Holder’s inequality,
P P
Ent(f7) < LB s < L g o

We are in a similar situation as in Section 2. By (2.5), we obtain Hf”2 <
5 IDf|2, which can be integrated to yield:

Corollary 7.2. For any smooth, coordinatewise convex f : [0,1]"
[0, +00), and any p > 2,

p—2
1717 = I£13 < =5~ IDf;.

This inequality may be used to bound probabilities of large deviations
of Lipschitz coordinatewise convex functions above the mean (similarly to
the approaches of [B1| and [L1]).

8. Appendix

Here we indicate how to derive the inequalities (1.5)-(1.6) and their
generalizations for the class of the Orlicz norms || - ||y, , generated by the
Young functions ¢,(t) = €ll" — 1 with an arbitrary parameter a > 1.

Given a measurable function f on a probability space (V, u), first assume
that ||f||, < p"/®, for all p > 1. By the Taylor expansion and using the bound
n™ < e"nl, we obtain that, for any * € [0, ),

' e/’

Eet|f|°—1+z E|f|0‘"<1+z

n <L .
— 11— et
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For the value ¢t = 2}?, the ratio on the right-hand side does not exceed
2, which means that || f]|% < 2ce. Hence, [|f|ly, < (20e)'/* < 2, since the

function o — (2aee)'/® is decreasing in a > 1.

Conversely, assume || f||,, < 1, that is, Eel/I® < 2. Using an elementary
inequality ¥ < Ce®® (z > 0) with an optimal constant C' = (£)P/®, we get
that E |f|P < 2C, so, || f||, < 2Y/P (£)Ve < 2pl/e,

One can now combine the two bounds, using the homogeneity of the
inequalities like (1.5)-(1.6) with respect to f.

Proposition 8.1. Given a > 1, for any measurable function f on 'V,

1/

1 ”pr
— < f < 2e sup . 8.1
— || ||'¢’a — p21 pl/a ( )

su
2 p211) pl/e

Thus, the equality ||f|l@) = sup,s; [p™*||fll,] provides a family of
the norms that are equivalent to ||f]|y,. These norms grow with «, and

im0 || fll@) = [1f]loo-
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